
www.dewesoft.com - Copyright © 2000 - 2024 Dewesoft d.o.o., all rights reserved.

Basic custom plugin development in C++

Introduction to Basic custom plugin development in C++
Do you want to be able to extend Dewesoft on your own? With the help of C++ Plugin you can create your own plugins and
integrate them into any Dewesoft. Since C++ Plugin uses Dewesoft internals, it can do anything that Dewesoft can. You can
take arbitrarily many input channels, process the data using modern C++, output the results into output channels, change
Dewesoft settings, and much much more!

C++ Plugin also allows you to create your very own user interface which is, together with your C++ code, compiled into an
external library and automatically recognised and loaded by Dewesoft. This is why your plugin can be easily exported and
imported for use on other computers.

All the examples of C++ Plugins we will create and the setups we will use in this tutorial are available on Dewesoft's webpage
under Support > Downloads > Developers > C++ Plugin. Note that you have to be logged in to access the C++ Plugin section.

1

https://download.dewesoft.com/list/developers/c-plugin

How to Install the Dewesoft plugin template?
In order to start using C++ Plugin, you must have Visual Studio IDE installed on your system. Some of the reasons we have
chosen Visual Studio are its functionalities, powerful developer tooling, like IntelliSense code completion and debugging, fast
code editor, easy modification/customization and many more.

Dewesoft plugin for Visual Studio development can be found on the Dewesoft webpage under Support -> Downloads ->
Developers -> C++ Plugin. Note that you have to be logged in to access the C++ Plugin section. After downloading, just double-
click the VSIX file and the installer will guide you through the installation process.

Once VSIX plugin is downloaded and installed you will be able to create the Dewesoft C++ plugin using the New project window
and selecting the DewesoftX C++ Plugin.

2

https://download.dewesoft.com/list/2/181

3

Example: Latch math
To get a better understanding of how to work with C++ Plugin we will implement a latch math module. Latch math outputs the
value of an input channel when some other input channel crosses some predefined criteria. An example use case of this
module could be to monitor your car engine RPM as you pass 100 km/h: we just set the first input channel to engine RPM, the
second input channel to the channel with our car's current speed, and set the criteria to 100 km/h.

Given this, at the end of the example, we should end up with a working module that allows you to select two input channels,
one to look for latch criteria points and one from which the outputted values will be read, and produce an output channel with
these values.

Signals for testing our module
Before we begin creating our C++ Plugin, let's first create the two input signals we will use to test it. Open Dewesoft, click on
the New setup button and then click Math.

The first signal will be the one we will use to look for criteria limit crossing. For our testing purposes, this signal will be a sine
with a frequency of 1 Hz. We can create it by clicking the Formula button next to the Add math button and add sine function
from the Signal tab. Let's name it "sine(1)". In the formula area write the following line:

sinesine((11))

The second signal will be the one from which we read the values to output at criteria limit. This signal will be the current time.
We add it by clicking the Formula button next to the Add math button and add time function from the Signal tab, naming it
"time".

timetime

Don't forget to save the setup!

4

Example: New C++ Plugin
Now we go back to Visual Studio. To create a new C++ Plugin we click the Project button in File tab > New > Project. We select
the Dewesoft X Plugin Template as our template and fill in the name of our project. After clicking the Ok button a wizard
window will appear to guide us through the creation of the plugin.

Since your plugin will be integrated inside Dewesoft, it needs to know Dewesoft's location. We can define the location by
ourselves and the installer will create DEWESOFT_EXE_X86 (for 32-bit Dewesoft) and DEWESOFT_EXE_X64 (for 64-bit
Dewesoft) system variables for us. In that case, Visual Studio will have to be restarted so it will update its used environmental
variables state.

Once those system variables are set, installer will automatically find those fields for you and you will not have to specify the
location for further usages.

If we want to set those variables ourselves, we can do this using System properties window (it can be found pressing Windows
5

key and searching for Edit the system environment variables), and under advanced tab clicking the Environment variables.

If you only have the 64-bit (or 32-bit) version of Dewesoft on your computer, you will only be able to create 64-bit (or 32-bit)
plugins.

After clicking the Next button the following window appears which is used to set Plugin information such as plugin name, its
ownership, and version.

Plugin name - The name that will be seen in Dewesoft.
Description - Short description of your plugin.
Vendor - Company that created the plugin.
Copyright - Owner of the plugin.
Major version - Sets the initial major version. The value should change when a breaking change occurs (it's incompatible
with previous versions).
Minor version - Sets the initial minor version. The value should change when new features and bug fixes are added
without breaking compatibility.
Release version - Sets the initial release version. The value should change if the new changes contain only bugfixes.

All fields are optional except for the Plugin name, and they can all be modified later from the code.

After clicking the Next button a final window appears. This window is used to set your Base class name. It is used as a prefix
for class and project name. When the Base class name is set, we can click the Finish button and the wizard will generate the
plugin template based on your choices.

6

Below the base class name, you can see a dropdown menu, where you can select the example which will be generated for you.
There are two options, one is a sine wave example, which will set everything up for outputing a sine wave values to the output
channel. The other option is Empty example, which will remove all example code from the project. We recommend using this if
you already have some knowledge about Dewesoft plugin development.

The Project name is the name of the file created by the Visual Studio.
The Plugin name is is the name of the plugin as seen in Dewesoft.
The Base class name is the name of the plugin inside of Visual Studio and has to be a valid C++ name.

When a new C++ Plugin project is created, the wizard will create the basic files and project structure needed for development.
In the picture below you can see the structure of a project in a tree view with collapsed items. In our case, ProTutorial refers to
text, which was used as the Base class name.

proTutorial_latchMath_scalar - Used for communication with Dewesoft through its DCOM interface and creating the
Plugin UI.
proTutorial_latchMath_scalarLib - Your main plugin logic should be defined here. In Example I, we will write plugin logic
inside the Plugin project to simplify things.
proTutorial_latchMath_scalarTest - Contains test cases that will be run during unit testing.
gtest - Simple library, required by ProTutorialPluginTest for unit testing your plugin. This project should not be modified.

When the solution is built for the rst time, we recommend rescanning it (to clear cache). If not, some false positive errors
might appear and auto-complete might not work. You can do this by clicking on the Project tab and choosing the Rescan
solution from the drop-down list.

7

Once the plugin is created and you stumble upon Error MSB8036: The Windows SDK version sdk_version was not found. You
should retarget your solution to use the one you have installed. You can do this by right clicking on your solution node in
Solution explorer and selecting Retarget solution.

Once the Retarget solution window is opened, you can select "Latest installed version" item.

When our project is successfully generated, we will be able to extend Dewesoft. But before implementing the logic behind our
plugin, let's take a look at how our plugin is integrated into Dewesoft. In order to do that, we have to start our program using
the shortcut F5 or pressing the Start button in the center of Visual Studio's main toolbar.

8

After Dewesoft loads, our plugin can be accessed in Dewesofts main toolbar in Measure mode under Ch. setup -> ProTutorial.
As we can see, it already contains some example elements which were automatically added to the user interface.

The user interface shown above is defined inside the setup_window.xml file. There are more user interfaces in the project
(Setup, Settings), each is found in a different location inside Dewesoft and has a different purpose.
* Setup
- Found in the Dewesoft main toolbar.
- Your main plugin user interface should be defined here.
* Settings
- Found in Options > Settings > Extensions > Plugin.
- General settings, variables, properties, and paths, which are set once and rarely changed should be defined here.

Files associated with them can be found in Visual Studios Solution explorer by expanding ProTutorialPlugin > UI folder.
If your plugin is not visible in Dewesoft you must manually add it. Click the Options icon in the top right corner and from the

drop-down list choose Settings. Go to the Extensions tab, click the button and find your plugin. Click on it and then click
the Enable button on the right.

9

10

Example I: Creating custom UI
We are now ready to start creating the plugin for Latch math. We will start by taking a look at the already existing UI for latch
math that is integrated into Dewesoft. It can be found in Measure mode -> Math -> Add math -> Latch value math. Keep in mind
that this is a basic tutorial so we will keep things simple. Our goal is to recreate the UI on the right side of the picture below.
We will not use the channel preview (bottom left corner), we will only allow the user to pick one Input channel and one Criteria
channel and the Output value will be set to Actual by default, so we will not allow the user to change it. We will also add Radio
buttons where the user will choose if we are looking for the latch condition at rising or falling edge.

Therefore, we will need two ComboBoxes (control, which contains a drop-down menu where only one item can be selected),
both displaying channel names. One will be used for selecting the Input channel and the other will be used for selecting
the Criteria channel. We will also need a TextBox (control, which displays a user-editable text) so the user will be able to enter
the Criteria limit and a Label (control, which displays read-only text) that will be added to the TextBox so it will be more
descriptive. Finally, we will need two RadioButtons (control, whose Checked property can be changed by clicking on it) for
determining whether we are calculating rising or falling edge.

We will visually group settings for Input channel and Criteria channel using CaptionPanel (layout control with a title) and a
Grid (a type of layout, which arranges its child controls in an arbitrary number of rows and columns that can be spanned).

11

We are now ready to create our custom user interface for latch math. The user interface is defined in the setup_window.xmlsetup_window.xml
file by using simple, XAML-like syntax. The XML code for our UI will be presented in smaller pieces so it will be easier to
explain and understand. For each code snippet, there will be a picture added so you can see what the code creates. Your user
interface can be seen inside Dewesoft when the plugin is run.

<<??xml versionxml version=="1.0""1.0" encoding encoding=="utf-8""utf-8"??>>
<<Window xmlnsWindow xmlns=="https://mui.dewesoft.com/schema/1.1""https://mui.dewesoft.com/schema/1.1">>
 <<GridGrid>>
 <<GridGrid..ColumnDefinitionsColumnDefinitions>>
 <<ColumnDefinition Width ColumnDefinition Width =="170""170"//>>
 <<ColumnDefinition Width ColumnDefinition Width =="100%""100%"//>>
 <<//GridGrid..ColumnDefinitionsColumnDefinitions>>
 <<GridGrid..RowDefinitionsRowDefinitions>>
 <<RowDefinition HeightRowDefinition Height=="100%""100%"//>>
 <<//GridGrid..RowDefinitionsRowDefinitions>>

This part of the code contains a Grid that will split your UI into two columns. The first column will have a width of 170 pixels
and the second column will take the remaining window width (e.g. if the window width is 500 pixels the second column will
have a width of 330px). If the window is resized, the width of the first column will remain fixed but the width of the second
column will be adapted to fit the window. As you can see the greed also contains a row, which takes the entire window height.

When using a Grid, it is important to set Grid.ColumnDefinitions and Grid.RowDefinitions, even if there is only one column or
row.

12

 <<CaptionPanel GridCaptionPanel Grid..ColumnColumn=="0""0" Title Title=="Input""Input">>
 <<GridGrid>>
 <<GridGrid..RowDefinitionsRowDefinitions>>
 <<RowDefinition HeightRowDefinition Height=="20""20"//>>
 <<RowDefinition HeightRowDefinition Height=="100%""100%"//>>
 <<//GridGrid..RowDefinitionsRowDefinitions>>
 <<GridGrid..ColumnDefinitionsColumnDefinitions>>
 <<ColumnDefinition WidthColumnDefinition Width=="100%""100%"//>>
 <<//GridGrid..ColumnDefinitionsColumnDefinitions>>

 <<Label TextLabel Text=="Input channel""Input channel" Grid Grid..RowRow=="0""0" //>>
 <<ComboBox MarginRightComboBox MarginRight=="20""20" Grid Grid..RowRow=="1""1" Name Name=="inputChannelName""inputChannelName" //>>
 <<//GridGrid>>
 <<//CaptionPanelCaptionPanel>>

With the code above we will add CaptionPanel to the first column of our main Grid. This is done by adding GridGrid..ColumnColumn=="0""0"
to the CaptionPanel. The Grid inside the CaptionPanel contains two rows, one for the Label and one for the ComboBox.

Note that we have added Name properties to components. Names are required to access components from the C++ code so
they have to be unique.

13

 <<CaptionPanel GridCaptionPanel Grid..ColumnColumn=="1""1" Title Title=="Latch criteria settings""Latch criteria settings">>
 <<GridGrid>>
 <<GridGrid..ColumnDefinitionsColumnDefinitions>>
 <<ColumnDefinition WidthColumnDefinition Width=="140""140"//>>
 <<ColumnDefinition WidthColumnDefinition Width=="30""30"//>>
 <<ColumnDefinition WidthColumnDefinition Width=="120""120"//>>
 <<ColumnDefinition WidthColumnDefinition Width=="100%""100%"//>>
 <<//GridGrid..ColumnDefinitionsColumnDefinitions>>
 <<GridGrid..RowDefinitionsRowDefinitions>>
 <<RowDefinition HeightRowDefinition Height=="20""20"//>>
 <<RowDefinition HeightRowDefinition Height=="20""20"//>>
 <<RowDefinition HeightRowDefinition Height=="10""10"//>>
 <<RowDefinition HeightRowDefinition Height=="20""20"//>>
 <<RowDefinition HeightRowDefinition Height=="20""20"//>>
 <<RowDefinition HeightRowDefinition Height=="100%""100%"//>>
 <<//GridGrid..RowDefinitionsRowDefinitions>>

 <<Label GridLabel Grid..ColumnColumn=="0""0" Text Text=="Criteria channel""Criteria channel"//>>
 <<ComboBox GridComboBox Grid..ColumnColumn=="0""0" Grid Grid..RowRow=="1""1" Name Name=="criteriaChannelName""criteriaChannelName" //>>
 <<Label GridLabel Grid..ColumnColumn=="2""2" Text Text=="Criteria limit""Criteria limit" //>>
 <<TextBox GridTextBox Grid..ColumnColumn=="2""2" Grid Grid..RowRow=="1""1" Name Name=="latchCriteria""latchCriteria" Text Text=="0""0">><<//TextBoxTextBox>>
 <<RadioButton GridRadioButton Grid..ColumnColumn=="0""0" Grid Grid..RowRow=="3""3" Name Name=="risingEdge""risingEdge" Label Label=="Rising edge""Rising edge"
IsCheckedIsChecked=="True""True" //>>
 <<RadioButton GridRadioButton Grid..ColumnColumn=="0""0" Grid Grid..RowRow=="4""4" Name Name=="fallingEdge""fallingEdge" Label Label=="Falling edge""Falling edge" //>>
 <<//GridGrid>>
 <<//CaptionPanelCaptionPanel>>
 <<//GridGrid>>
<<//WindowWindow>>

And lastly, we add the code for filling out the second column of our main Grid. This one is a bit more complex since elements
need to be aligned and visually grouped (items that are connected should be closer. e.g. Criteria limit caption Label and
TextBox). That is why we have created another Grid element with six rows and four columns, where our components can be
inserted.

MUI Designer

14

So far we have tested our user interface inside Dewesoft by running our plugin. When editing the UI it is not necessary to run
the plugin every time we want to see the changes we made. We can use MUI Designer, which live previews your design. It can
be found in Visual Studio > View > Other windows > MUI Designer (Dewesoft).

In the picture below you can see our final user interface in MUI Designer. The preview is automatically refreshed when the
code is changed and if we run the plugin in Dewesoft the UI will look and behave exactly like shown in the MUI Designer.

Adding XML components is not only possible by manually typing them out; we can use the MUI Snippets window, which
contains all available controls, to automate the typing. It can be found in Visual Studio > View > Other Windows > MUI Snippet
(Dewesoft). Adding code is extremely simple: all we have to do is place the caret where we wish the text to be inserted and
double-click the desired control.

15

16

Example I: Accessing the UI component using C++
We have now created the user interface for our plugin but it is not really doing anything at the moment. We still have to add
some functionality to the UI components.

It is important to keep in mind that C++ uses header files (you can recognize them by the .h extension) in addition to source
files. Header files are designed to provide information about your class and are used for declaration of variables and methods,
while their initialization is done in the source files with .cpp extension. Before writing our own code, we will first remove the
sample code as it is not needed. Our setup_window.hsetup_window.h should look like this:

##pragmapragma once once
##includeinclude <mui/ds_window.h><mui/ds_window.h>
##includeinclude <mui/controls.h><mui/controls.h>
##includeinclude <mui/layout.h><mui/layout.h>

class DewesoftBridgeclass DewesoftBridge;;

class SetupWindow class SetupWindow :: public Dewesoft public Dewesoft::::MUIMUI::::DSWindowDSWindow
{{
publicpublic::
 SetupWindowSetupWindow((DewesoftDewesoft::::MUIMUI::::WindowPtr uiWindowPtr ui,, DewesoftBridge DewesoftBridge&& bridge bridge));;

privateprivate::
 DewesoftBridge DewesoftBridge&& bridge bridge;;
}};;

and setup_window.cpp should look like this:

##includeinclude "StdAfx.h""StdAfx.h"
##includeinclude "setup_window.h""setup_window.h"
##includeinclude "dewesoft_bridge.h""dewesoft_bridge.h"
##includeinclude <thread><thread>
##includeinclude <chrono><chrono>
##includeinclude <regex><regex>

using namespace Dewesoftusing namespace Dewesoft::::MUIMUI;;
using namespace Dewesoftusing namespace Dewesoft::::RTRT::::CoreCore;;

SetupWindowSetupWindow::::SetupWindowSetupWindow((WindowPtr uiWindowPtr ui,, DewesoftBridge DewesoftBridge&& bridge bridge))
 :: DSWindowDSWindow((uiui,, "ui/setup_window.xml""ui/setup_window.xml"))
 ,, bridgebridge((bridgebridge))
{{
}}

Our new components will be declared in setup_window.h file. We usually keep components in the private section of our class.
We then forward all the information from the controls and their events to the bridge that will handle all the communication
with Dewesoft.

17

privateprivate::
 DewesoftBridge DewesoftBridge&& bridge bridge;;

 Dewesoft Dewesoft::::MUIMUI::::ComboBox criteriaChannelCBoxComboBox criteriaChannelCBox;;
 Dewesoft Dewesoft::::MUIMUI::::ComboBox inputChannelCBoxComboBox inputChannelCBox;;
 Dewesoft Dewesoft::::MUIMUI::::TextBox latchCriteriaTBoxTextBox latchCriteriaTBox;;
 Dewesoft Dewesoft::::MUIMUI::::RadioButton risingEdgeRButtonRadioButton risingEdgeRButton;;
 Dewesoft Dewesoft::::MUIMUI::::RadioButton fallingEdgeRButtonRadioButton fallingEdgeRButton;;

Members are later initialized in setup_window.cpp file where we connect them with UI component by specifying the
component name. In our case this is done in the class constructor by using the ConnectConnect method.

SetupWindowSetupWindow::::SetupWindowSetupWindow((WindowPtr uiWindowPtr ui,, DewesoftBridge DewesoftBridge&& bridge bridge))
 :: DSWindowDSWindow((uiui,, "ui/setup_window.xml""ui/setup_window.xml"))
 ,, bridgebridge((bridgebridge))
{{
 criteriaChannelCBox criteriaChannelCBox == ComboBox ComboBox::::ConnectConnect((uiui,, "criteriaChannelName""criteriaChannelName"));;
 inputChannelCBox inputChannelCBox == ComboBox ComboBox::::ConnectConnect((uiui,, "inputChannelName""inputChannelName"));;
 latchCriteriaTBox latchCriteriaTBox == TextBox TextBox::::ConnectConnect((uiui,, "latchCriteria""latchCriteria"));;
 risingEdgeRButton risingEdgeRButton == RadioButton RadioButton::::ConnectConnect((uiui,, "risingEdge""risingEdge"));;
 fallingEdgeRButton fallingEdgeRButton == RadioButton RadioButton::::ConnectConnect((uiui,, "fallingEdge""fallingEdge"));;
}}

After successfully connecting the UI components we now need to get the available channels from Dewesoft and list their
names in ComboBoxes so the user can see and choose them. To make our calculation easier, our input channels will be
synchronous (time difference between two sequential samples is always the same). We first have to get all the available
channels from Dewesoft and filter out all but the synchronous ones.

In order to do so, we have to access Dewesoft internals, which can be done inside the DewesoftBridge (you can find it in the
dewesoft_bridge.h and dewesoft_bridge.cpp). The channel information is stored in the bridge member variable appapp which
represents the Dewesoft DCOM interface. We create a getter function called getSyncChannelsgetSyncChannels (()) that will read the channels
from appapp , filter them and return only the synchronous ones.

18

// dewesoft_bridge.h// dewesoft_bridge.h
// this method needs to be public// this method needs to be public
stdstd::::vectorvector<<IChannelPtrIChannelPtr>> getSyncChannelsgetSyncChannels(());;

// dewesoft_bridge.cpp// dewesoft_bridge.cpp
stdstd::::vectorvector<<IChannelPtrIChannelPtr>> DewesoftBridge DewesoftBridge::::getSyncChannelsgetSyncChannels(())
{{
 std std::::vectorvector<<IChannelPtrIChannelPtr>> allSyncChannels allSyncChannels;;

 app app->->DataData->->BuildChannelListBuildChannelList(());;
 IChannelListPtr channels IChannelListPtr channels == app app->->DataData->->UsedChannelsUsedChannels;;

 forfor ((intint i i == 00;; i i << channels channels->->CountCount;; i i++++))
 ifif ((!!channelschannels->->GetItemGetItem((ii))->->AsyncAsync))
 allSyncChannels allSyncChannels..push_backpush_back((channelschannels->->GetItemGetItem((ii))));;

 returnreturn allSyncChannels allSyncChannels;;
}}

Once getSyncChannelsgetSyncChannels(()) function is written, we are ready to insert channel names into CheckBoxes. We will do this in a
constructor in the file setup_window.cpp below the initialization of the controls. The criteriaChannelCBoxcriteriaChannelCBox and
inputChannelCBoxinputChannelCBox refer to CheckBoxes in which channel names will be inserted. To insert channel names to ComboBox,
we will create a function called voidvoid addChannelsToCBoxaddChannelsToCBox(());;, which should be public because we will need it later inside of
the bridge.

// setup_window.h // setup_window.h
voidvoid addChannelsToCBoxaddChannelsToCBox(());;

19

// setup_window.cpp// setup_window.cpp
SetupWindowSetupWindow::::SetupWindowSetupWindow((WindowPtr uiWindowPtr ui,, DewesoftBridge DewesoftBridge&& bridge bridge))
 :: DSWindowDSWindow((uiui,, "ui/setup_window.xml""ui/setup_window.xml"))
 ,, bridgebridge((bridgebridge))
{{
 // member initialization// member initialization
 // ...// ...
 addChannelsToCBoxaddChannelsToCBox(());;
}}

voidvoid SetupWindow SetupWindow::::addChannelsToCBoxaddChannelsToCBox(())
{{
 criteriaChannelCBox criteriaChannelCBox..clearclear(());;
 inputChannelCBox inputChannelCBox..clearclear(());;
 std std::::vectorvector<<IChannelPtrIChannelPtr>> allChannels allChannels == bridge bridge..getSyncChannelsgetSyncChannels(());;

 forfor ((intint i i == 00;; i i << allChannels allChannels..sizesize(());; i i++++))
 {{
 std std::::string channelName string channelName == allChannels allChannels[[ii]]->->NameName;;
 criteriaChannelCBox criteriaChannelCBox..addItemaddItem((channelNamechannelName));;
 inputChannelCBox inputChannelCBox..addItemaddItem((channelNamechannelName));;
 }}
}}

If we now start Dewesoft, channel names should appear when we click on ComboBoxes.

20

Example I: Handling events
We have now initialized all UI components we will need in our example, but these components don't do anything yet. To bring
them to life we need to introduce events to our code (e.g. Click, CheckedChanged, ...). To create an event all you have to do is
provide a method with the same signature as the control's event handler and then bind it to the control.

A method signature is its return type, calling convention, and argument order and their types. Event handlers usually have the
signature of voidvoid((ComponentTypeComponentType&& sender sender,, EventArgsType EventArgsType&& args args)).

Event handlers are declared in the header files. Here you can see the declaration of event handlers that will be executed when
an event is triggered. This part of the code should be placed inside the private section in setup_window.hsetup_window.h file.

privateprivate
 // ...// ...
 voidvoid onCriteriaChannelChangedonCriteriaChannelChanged((DewesoftDewesoft::::MUIMUI::::ComboBoxComboBox&& cBox cBox,, Dewesoft Dewesoft::::MUIMUI::::EventArgsEventArgs&& args args));;
 voidvoid onInputChannelChangedonInputChannelChanged((DewesoftDewesoft::::MUIMUI::::ComboBoxComboBox&& cBox cBox,, Dewesoft Dewesoft::::MUIMUI::::EventArgsEventArgs&& args args));;
 voidvoid onEditTextChangedonEditTextChanged((DewesoftDewesoft::::MUIMUI::::TextBoxTextBox&& editBox editBox,, Dewesoft Dewesoft::::MUIMUI::::EventArgsEventArgs&& args args));;
 voidvoid onRadioGroupChangedonRadioGroupChanged((DewesoftDewesoft::::MUIMUI::::RadioButtonRadioButton&& radioGroup radioGroup,, Dewesoft Dewesoft::::MUIMUI::::EventArgsEventArgs&&
argsargs));;
}}

Because a component can have multiple event handlers bound to the same event, we use ++== operator for adding and --==
operator for removing event handlers. This can only be done after the variable is connected. In our case, we bind events in the
constructor immediately after connecting the variables. The code for how to bind events to our controls in setup_window.cppsetup_window.cpp
can be seen below.

SetupWindowSetupWindow::::SetupWindowSetupWindow((WindowPtr uiWindowPtr ui,, DewesoftBridge DewesoftBridge&& bridge bridge))
 :: DSWindowDSWindow((uiui,, "ui/setup_window.xml""ui/setup_window.xml"))
 ,, bridgebridge((bridgebridge))
{{
 // member initialisation// member initialisation
 // adding channel names to ComboBoxes// adding channel names to ComboBoxes
 // ...// ...
 criteriaChannelCBox criteriaChannelCBox..OnChange OnChange ++== eventevent((&&SetupWindowSetupWindow::::onCriteriaChannelChangedonCriteriaChannelChanged));;
 inputChannelCBox inputChannelCBox..OnChange OnChange ++== eventevent((&&SetupWindowSetupWindow::::onInputChannelChangedonInputChannelChanged));;
 latchCriteriaTBox latchCriteriaTBox..OnTextChanged OnTextChanged ++== eventevent((&&SetupWindowSetupWindow::::onEditTextChangedonEditTextChanged));;
 risingEdgeRButton risingEdgeRButton..OnCheckedChanged OnCheckedChanged ++== eventevent((&&SetupWindowSetupWindow::::onRadioGroupChangedonRadioGroupChanged));;
 fallingEdgeRButton fallingEdgeRButton..OnCheckedChanged OnCheckedChanged ++== eventevent((&&SetupWindowSetupWindow::::onRadioGroupChangedonRadioGroupChanged));;
}}

Event handlers are defined in setup_window.cpp file. The following pictures will show which event handler is called when a
certain action is performed.

21

This part of the code is triggered if we click on an item (that is not already selected) inside ComboBox containing Criteria
channel names.

voidvoid SetupWindow SetupWindow::::onCriteriaChannelChangedonCriteriaChannelChanged((DewesoftDewesoft::::MUIMUI::::ComboBoxComboBox&& cBox cBox,,
DewesoftDewesoft::::MUIMUI::::EventArgsEventArgs&& args args))
{{
 bridge bridge..setCriteriaChannelNamesetCriteriaChannelName((cBoxcBox..getSelectedItemgetSelectedItem(())));;
}}

22

This part of the code is triggered if we click on any item (that is not already selected) inside the ComboBox component
containing input channel names.

voidvoid SetupWindow SetupWindow::::onInputChannelChangedonInputChannelChanged((DewesoftDewesoft::::MUIMUI::::ComboBoxComboBox&& cBox cBox,,
DewesoftDewesoft::::MUIMUI::::EventArgsEventArgs&& args args))
{{
 bridge bridge..setInputChannelNamesetInputChannelName((cBoxcBox..getSelectedItemgetSelectedItem(())));;
}}

23

This part of the code is triggered if we edit text in component marked with the red square in the picture above.

voidvoid SetupWindow SetupWindow::::onEditTextChangedonEditTextChanged((DewesoftDewesoft::::MUIMUI::::TextBoxTextBox&& editBox editBox,, Dewesoft Dewesoft::::MUIMUI::::EventArgsEventArgs&&
argsargs))
{{
 bridge bridge..setCriteriaLimitsetCriteriaLimit((stofstof((editBoxeditBox..getTextgetText(())..toStdStringtoStdString(())))));;
}}

24

This part of the code is triggered if we click on the component marked with the red square in the picture above.

voidvoid SetupWindow SetupWindow::::onRadioGroupChangedonRadioGroupChanged((RadioButtonRadioButton&& radioGroup radioGroup,, EventArgs EventArgs&& args args))
{{
 ifif ((SetupWindowSetupWindow::::fallingEdgeRButtonfallingEdgeRButton..getIsCheckedgetIsChecked(())))
 bridge bridge..setEdgeTypesetEdgeType((FallingEdgeFallingEdge));;
 elseelse
 bridge bridge..setEdgeTypesetEdgeType((RisingEdgeRisingEdge));;
}}

25

Example I: DewesoftBridge
The main purpose of DewesoftBridge is to allow your plugin to communicate with Dewesoft. It contains functions and events,
that are triggered at a certain time (e.g. when measuring is started, when measuring is stopped, when setup is saved,...). The
list of all function and events can be found in dewesoft_bridge.h file. In this section we will only mention those used in order
for our plugin to work as intended, others will remain unchanged. We will use this class for implementing the logic behind the
latch math.

We will first make changes to the dewesoft_bridge.h file where we will declare methods and variables. For our plugin to work
we need variables for holding Criteria limit value, channel names and for determining whether we are calculating the rising or
falling edge. We will also create getter and setter functions for these variables. All of these variables and methods are only
going to be accessed inside the DewesoftBridge, so they should be private.

26

enumenum edgeTypes edgeTypes
{{
 RisingEdge RisingEdge == 00,,
 FallingEdge FallingEdge == 11
}};;

class DewesoftBridgeclass DewesoftBridge
{{
publicpublic::
 // ...// ...

 /* Declarations of methods we added*//* Declarations of methods we added*/
 std std::::vectorvector<<IChannelPtrIChannelPtr>> getSyncChannelsgetSyncChannels(());;

 voidvoid setCriteriaChannelNamesetCriteriaChannelName((stdstd::::string namestring name));;
 std std::::string string getCriteriaChannelNamegetCriteriaChannelName(());;

 voidvoid setInputChannelNamesetInputChannelName((stdstd::::string namestring name));;
 std std::::string string getInputChannelNamegetInputChannelName(());;

 voidvoid setCriteriaChannelsetCriteriaChannel((stdstd::::string channelNamestring channelName));;
 IChannelPtr IChannelPtr getCriteriaChannelgetCriteriaChannel(());;

 voidvoid setInputChannelsetInputChannel((stdstd::::string channelNamestring channelName));;
 IChannelPtr IChannelPtr getInputChannelgetInputChannel(());;

 voidvoid setCriteriaLimitsetCriteriaLimit((floatfloat threshold threshold));;
 floatfloat getCriteriaLimitgetCriteriaLimit(());;

 voidvoid setEdgeTypesetEdgeType((edgeTypes typeedgeTypes type));;
 edgeTypes edgeTypes getEdgeTypegetEdgeType(());;

privateprivate::
 // ...// ...

 /* Declarations of methods and variables we added *//* Declarations of methods and variables we added */
 std std::::string inputChannelName string inputChannelName == """";;
 std std::::string criteriaChannelName string criteriaChannelName == """";;
 IChannelPtr inputChannel IChannelPtr inputChannel;;
 IChannelPtr criteriaChannel IChannelPtr criteriaChannel;;

 floatfloat criteriaLimit criteriaLimit == 00;;
 edgeTypes edgeType edgeTypes edgeType == RisingEdge RisingEdge;;

 int64_t lastPosChecked int64_t lastPosChecked;;
}};;

Definitions of setters and getters should be written in dewesoft_bridge.cpp.

27

voidvoid DewesoftBridge DewesoftBridge::::setCriteriaChannelNamesetCriteriaChannelName((stdstd::::string namestring name))
{{
 this this->->criteriaChannelName criteriaChannelName == name name;;
}}
stdstd::::string DewesoftBridgestring DewesoftBridge::::getCriteriaChannelNamegetCriteriaChannelName(())
{{
 returnreturn this this->->criteriaChannelNamecriteriaChannelName;;
}}

voidvoid DewesoftBridge DewesoftBridge::::setInputChannelNamesetInputChannelName((stdstd::::string namestring name))
{{
 this this->->inputChannelName inputChannelName == name name;;
}}
stdstd::::string DewesoftBridgestring DewesoftBridge::::getInputChannelNamegetInputChannelName(())
{{
 returnreturn this this->->inputChannelNameinputChannelName;;
}}

voidvoid DewesoftBridge DewesoftBridge::::setCriteriaChannelsetCriteriaChannel((stdstd::::string channelNamestring channelName))
{{
 criteriaChannel criteriaChannel == app app->->DataData->->FindChannelFindChannel((channelNamechannelName..c_strc_str(())));;
}}
IChannelPtr DewesoftBridgeIChannelPtr DewesoftBridge::::getCriteriaChannelgetCriteriaChannel(())
{{
 returnreturn this this->->criteriaChannelcriteriaChannel;;
}}

voidvoid DewesoftBridge DewesoftBridge::::setInputChannelsetInputChannel((stdstd::::string channelNamestring channelName))
{{
 this this->->inputChannel inputChannel == app app->->DataData->->FindChannelFindChannel((channelNamechannelName..c_strc_str(())));;
}}
IChannelPtr DewesoftBridgeIChannelPtr DewesoftBridge::::getInputChannelgetInputChannel(())
{{
 returnreturn this this->->inputChannelinputChannel;;
}}

voidvoid DewesoftBridge DewesoftBridge::::setCriteriaLimitsetCriteriaLimit((floatfloat threshold threshold))
{{
 this this->->criteriaLimit criteriaLimit == threshold threshold;;
}}
floatfloat DewesoftBridge DewesoftBridge::::getCriteriaLimitgetCriteriaLimit(())
{{
 returnreturn this this->->criteriaLimitcriteriaLimit;;
}}

voidvoid DewesoftBridge DewesoftBridge::::setEdgeTypesetEdgeType((edgeTypes typeedgeTypes type))
{{
 this this->->edgeType edgeType == type type;;
}}
edgeTypes DewesoftBridgeedgeTypes DewesoftBridge::::getEdgeTypegetEdgeType(())
{{
 returnreturn this this->->edgeTypeedgeType;;
}}

28

In the rest of this section we mention methods which were modified so our plugin works as it should.

DewesoftBridge::mountChannels()
The voidvoid DewesoftBridge DewesoftBridge::::mountChannelsmountChannels(()) method is called when your plugin or setup is first loaded. This method
gives you the option to create your own output channels inside Dewesoft. In our example, the output channel should be of an
asynchronous type because we do not know exactly when a new sample will be added. We will set basic channel properties
like channel name, base type (synchronous, asynchronous type) and underlying data type.

voidvoid DewesoftBridge DewesoftBridge::::mountChannelsmountChannels(())
{{
 constconst std std::::vectorvector<<intint>> chIndexVector chIndexVector == {{11}};;

 outputChannel outputChannel == pluginGroup pluginGroup->->MountChannelExMountChannelEx((pluginGuidpluginGuid,, longlong((chIndexVectorchIndexVector..sizesize(()))),,
fromStdVecfromStdVec((chIndexVectorchIndexVector))));;

 outputChannel outputChannel->->SetDataTypeSetDataType((longlong((ChannelDataTypeChannelDataType::::SingleSingle))));;
 outputChannel outputChannel->->Name Name == "Latch""Latch";;
 outputChannel outputChannel->->Unit_ Unit_ == """";;
 outputChannel outputChannel->->SetAsyncSetAsync((truetrue));;
 outputChannel outputChannel->->ExpectedAsyncRate ExpectedAsyncRate == app app->->DataData->->GetSampleRateExGetSampleRateEx(());;
 outputChannel outputChannel->->Used Used == true true;;
}}

Dewesoft::onStartData()
This method gets called before the start of each measurement. Here we should initialize all variables used during our
measurement.

STDMETHODIMP DewesoftBridgeSTDMETHODIMP DewesoftBridge::::onStartDataonStartData(())
{{
 setInputChannelsetInputChannel((inputChannelNameinputChannelName..c_strc_str(())));;
 setCriteriaChannelsetCriteriaChannel((criteriaChannelNamecriteriaChannelName..c_strc_str(())));;
 lastPosChecked lastPosChecked == 00;;

 returnreturn S_OK S_OK;;
}}

DewesoftBridge::onGetData()
This method is called repeatedly during Measure mode. Here we can safely read from and write to the channels. We should
not perform any time-consuming tasks here. The method itself is marked as STDMETHODIMP, this is required for Dewesoft to
call this function over the DCOM interface. Keep in mind that the method gets a block of samples and not an individual sample
every time it gets called, so if we want to access every sample in the channel we need to create a loop that will perform this

29

action.

STDMETHODIMP DewesoftBridgeSTDMETHODIMP DewesoftBridge::::onGetDataonGetData(())
{{
 ifif ((!!inputChannel inputChannel |||| !!criteriaChannelcriteriaChannel))
 returnreturn S_OK S_OK;;

 // calculate the size of blocks in both channels// calculate the size of blocks in both channels
 intint blockSizeCriteriaChannel blockSizeCriteriaChannel ==
 ((criteriaChannelcriteriaChannel->->DBPos DBPos -- ((lastPosChecked lastPosChecked %% criteriaChannel criteriaChannel->->DBBufSizeDBBufSize)) ++ criteriaChannel criteriaChannel--
>>DBBufSizeDBBufSize)) %% criteriaChannel criteriaChannel->->DBBufSizeDBBufSize;;
 intint blockSizeInputChannel blockSizeInputChannel ==
 ((inputChannelinputChannel->->DBPos DBPos -- ((lastPosChecked lastPosChecked %% inputChannel inputChannel->->DBBufSizeDBBufSize)) ++ inputChannel inputChannel--
>>DBBufSizeDBBufSize)) %% inputChannel inputChannel->->DBBufSizeDBBufSize;;

 intint minBlockSize minBlockSize == minmin((blockSizeCriteriaChannelblockSizeCriteriaChannel,, blockSizeInputChannel blockSizeInputChannel));;

 forfor ((intint i i == 00;; i i << minBlockSize minBlockSize -- 11;; i i++++))
 {{
 floatfloat currentSampleCriteriaChannel currentSampleCriteriaChannel == criteriaChannel criteriaChannel->->DBValuesDBValues[[lastPosChecked lastPosChecked %%
criteriaChannelcriteriaChannel->->DBBufSizeDBBufSize]];;
 floatfloat nextSampleCriteriaChannel nextSampleCriteriaChannel == criteriaChannel criteriaChannel->->DBValuesDBValues[[((lastPosChecked lastPosChecked ++ 11)) %%
criteriaChannelcriteriaChannel->->DBBufSizeDBBufSize]];;

 // check if the two samples from Criteria channel are on different sides of Latch criteria// check if the two samples from Criteria channel are on different sides of Latch criteria
 bool crossedRisingEdgeCriteria bool crossedRisingEdgeCriteria == currentSampleCriteriaChannel currentSampleCriteriaChannel <=<= criteriaLimit criteriaLimit &&&&
nextSampleCriteriaChannel nextSampleCriteriaChannel >=>= criteriaLimit criteriaLimit;;
 bool crossedFallingEdgeCriteria bool crossedFallingEdgeCriteria == currentSampleCriteriaChannel currentSampleCriteriaChannel >=>= criteriaLimit criteriaLimit &&&&
nextSampleCriteriaChannel nextSampleCriteriaChannel <=<= criteriaLimit criteriaLimit;;

 // if user set the type of edge to rising edge and the Criteria channel crossed it// if user set the type of edge to rising edge and the Criteria channel crossed it
 // or user set the type of edge to falling edge and the Criteria channel crossed it// or user set the type of edge to falling edge and the Criteria channel crossed it
 ifif ((((crossedFallingEdgeCriteria crossedFallingEdgeCriteria &&&& edgeType edgeType ==== FallingEdge FallingEdge)) |||| ((crossedRisingEdgeCriteria crossedRisingEdgeCriteria &&&&
edgeType edgeType ==== RisingEdge RisingEdge))))
 {{
 // add the value of the next sample from Input channel to the Latched channel// add the value of the next sample from Input channel to the Latched channel
 floatfloat value value == inputChannel inputChannel->->DBValuesDBValues[[((lastPosChecked lastPosChecked ++ 11)) %% inputChannel inputChannel->->DBBufSizeDBBufSize]];;
 outputChannel outputChannel->->AddAsyncSingleSampleAddAsyncSingleSample((valuevalue,, ((lastPosChecked lastPosChecked ++ 11)) // app app->->DataData--
>>SampleRateExSampleRateEx));;
 }}
 lastPosChecked lastPosChecked++++;;
 }}
 returnreturn S_OK S_OK;;
}}

Writing to output channels and reading from input channels is only valid inside ::onGetData() procedure! Attempting to do so
from any other function might result in your plugin crashing!

30

Example I: Output result
We are now ready to test our plugin. We can do this by running your plugin by pressing F5 on your keyboard and going to Ch.
setup tab, then click the Latch math - Scalar button in the main toolbar in Dewesoft. A window like this should appear.

Remember the setup we created and saved in Dewesoft before? We are going to use it here. We go to the Setup files tab and
double-click on the setup we want to load. The setup we loaded should include the two signals we created earlier and a blank
setup Latch Math - Scalar setup window.

We assign the signals to the Input and Criteria channel, set the Criteria limit and decide whether we are looking for a latch
conditions at rising or falling edge. Our setup should now look like this:

Now we can go to the Measure tab, where we can see a visual representation of the Latch.

Note that to get the exact picture below we turned off the Interpolate asynchronous channels option in the Drawing option of
the recorder setup, to better demonstrate that our values are "latched".

31

In the picture above we can see that every time the sine signal passes 0 at the rising edge threshold, the output channel
outputs the current value of the time signal. The outputted value represents the time at which the sine signal passed 0.

Now change the edge type to falling edge and the criteria limit to 0,5. The results will now look like this:

32

33

Example II: Vector latch math explanation
Our Latch math example can only output scalar sample values. But what if we wanted to latch a vector channel at some
condition? We can not just assign this channel as our input because our plugin does not know how to behave in the case of a
vector input. This problem can also be solved using C++ Plugin and we will do this by making some changes to our current
plugin.

To understand which changes we need, let's first make a slight detour and explain the different types of channels in Dewesoft.

Channel types
We can think of a channel in Dewesoft as a structure holding our signals. Channels can be split in two ways: the first split is
based on the value type of the channel, and the second one on its time base.

Based on their value type, channels can be split into:

scalar, vector, and matrix channels; where each of these could be
real, or complex channels.

This means that if you have e.g. a real vector channel all the samples in the channel are vectors (of same dimensions) with
real values.

Based on their time base, channels can be split into:

synchronous;
asynchronous; and
single value.

Synchronous channels have equidistant time between consecutive samples. The time difference is defined by the acquisition
sample rate and channel's sample rate divider. Asynchronous channels, on the other hand, don't have this restriction: the time
between two consecutive samples can be arbitrary. Finally, single value channels don't care about time at all, they only contain
one single sample per entire measurement with no timestamp - meaning each new sample in the single value channel simply
overwrites the current value.

In Dewesoft only scalar channels can have a synchronous time base.

For a more visual example, the following image shows a sine curve in channels with different time bases.

34

Synchronous and asynchronous channels use a circular buffer. This means that when the direct buffer is full, the newest
samples will override the oldest. Asynchronous channels also have an additional circular buffer used for storing timestamps.

Signals for testing our module
With these terms explained, let's go back to our problem. Like we created scalar channels at the very start of the training, let's
now create some dummy vector channel for testing our modified module. One math module in Dewesoft that has vectors as
output is Fourier transform, so let's use that. We add a new Fourier transform setup from the Add math drop-down list. We
change the Resolution in Calculation parameters section to 256 lines (meaning the output vectors will have 256 elements) and
click Ok.

35

36

From Example I to Example II
Now that we have created a working plugin, we are ready to move to more complex concepts. We will use the project, which
was created in Example I and modify it to support vector channel. Example II will be more complex, so we will have to modify
things, which were simplified in Example I. We have already mentioned that all plugin logic, which does not need Dewesoft
internals, should be defined inside the proTutorial_LatchMath_vectorPluginLib project, although we did not take that into
account in Example I. So moving non-Dewesoft logic from the DewesoftBridge to the
proTutorial_LatchMath_vectorPluginLib will be the first thing we will do.

DewesoftBridge is used for communicating with Dewesoft internals, that is why it should only contain functions which are
meant to do that. This is why we will create a function for checking if we crossed the Criteria limit in the
proTutorial_LatchMath_vectorPluginLib. In the protutorial_latchmath_vector.h file we declare the method:

class proTutorial_LatchMath_vectorclass proTutorial_LatchMath_vector
{{
publicpublic
 bool bool checkCrossedEdgeCriteriacheckCrossedEdgeCriteria((floatfloat currentSampleCriteriaChannel currentSampleCriteriaChannel,, floatfloat nextSampleCriteriaChannel nextSampleCriteriaChannel,,
floatfloat criteriaLimit criteriaLimit,, intint edgeType edgeType));;
}};;

And in the protutorial_latchmath_vector.cpp file we define it.

bool proTutorial_LatchMath_vectorbool proTutorial_LatchMath_vector::::checkCrossedEdgeCriteriacheckCrossedEdgeCriteria((floatfloat currentSampleCriteriaChannel currentSampleCriteriaChannel,,
 floatfloat nextSampleCriteriaChannel nextSampleCriteriaChannel,,
 floatfloat criteriaLimit criteriaLimit,,
 intint edgeType edgeType))
{{
 bool crossedRisingEdgeCriteria bool crossedRisingEdgeCriteria == currentSampleCriteriaChannel currentSampleCriteriaChannel <=<= criteriaLimit criteriaLimit &&&&
nextSampleCriteriaChannel nextSampleCriteriaChannel >=>= criteriaLimit criteriaLimit;;
 bool crossedFallingEdgeCriteria bool crossedFallingEdgeCriteria == currentSampleCriteriaChannel currentSampleCriteriaChannel >=>= criteriaLimit criteriaLimit &&&&
nextSampleCriteriaChannel nextSampleCriteriaChannel <=<= criteriaLimit criteriaLimit;;

 ifif ((((crossedFallingEdgeCriteria crossedFallingEdgeCriteria &&&& edgeType edgeType ==== 11)) |||| ((crossedRisingEdgeCriteria crossedRisingEdgeCriteria &&&& edgeType edgeType ==== 00))))
 returnreturn true true;;
 elseelse
 returnreturn false false;;
}}

Now, we have to change the method DewesoftBridgeDewesoftBridge::::onGetDataonGetData(()) in dewesoft_bridge.cpp file so it will use this new
method.

37

STDMETHODIMP DewesoftBridgeSTDMETHODIMP DewesoftBridge::::onGetDataonGetData(())
{{
 ifif ((!!inputChannel inputChannel |||| !!criteriaChannelcriteriaChannel))
 returnreturn S_OK S_OK;;

 intint blockSizeCriteriaChannel blockSizeCriteriaChannel ==
 ((criteriaChannelcriteriaChannel->->DBPos DBPos -- ((lastPosChecked lastPosChecked %% criteriaChannel criteriaChannel->->DBBufSizeDBBufSize)) ++ criteriaChannel criteriaChannel--
>>DBBufSizeDBBufSize)) %% criteriaChannel criteriaChannel->->DBBufSizeDBBufSize;;
 intint blockSizeInputChannel blockSizeInputChannel ==
 ((inputChannelinputChannel->->DBPos DBPos -- ((lastPosChecked lastPosChecked %% inputChannel inputChannel->->DBBufSizeDBBufSize)) ++ inputChannel inputChannel--
>>DBBufSizeDBBufSize)) %% inputChannel inputChannel->->DBBufSizeDBBufSize;;

 intint minBlockSize minBlockSize == minmin((blockSizeCriteriaChannelblockSizeCriteriaChannel,, blockSizeInputChannel blockSizeInputChannel));;

 forfor ((intint i i == 00;; i i << minBlockSize minBlockSize -- 11;; i i++++))
 {{
 floatfloat currentSampleCriteriaChannel currentSampleCriteriaChannel == criteriaChannel criteriaChannel->->DBValuesDBValues[[lastPosChecked lastPosChecked %%
criteriaChannelcriteriaChannel->->DBBufSizeDBBufSize]];;
 floatfloat nextSampleCriteriaChannel nextSampleCriteriaChannel == criteriaChannel criteriaChannel->->DBValuesDBValues[[((lastPosChecked lastPosChecked ++ 11)) %%
criteriaChannelcriteriaChannel->->DBBufSizeDBBufSize]];;

 bool crossedEdgeCriteria bool crossedEdgeCriteria ==
protutorial_latchmath_vectorprotutorial_latchmath_vector..checkCrossedEdgeCriteriacheckCrossedEdgeCriteria((currentSampleCriteriaChannelcurrentSampleCriteriaChannel,,
 nextSampleCriteriaChannel nextSampleCriteriaChannel,,
 criteriaLimit criteriaLimit,,
 edgeType edgeType));;
 ifif ((crossedEdgeCriteriacrossedEdgeCriteria))
 {{
 floatfloat value value == inputChannel inputChannel->->DBValuesDBValues[[((lastPosChecked lastPosChecked ++ 11)) %% inputChannel inputChannel->->DBBufSizeDBBufSize]];;
 outputChannel outputChannel->->AddAsyncSingleSampleAddAsyncSingleSample((valuevalue,, ((lastPosChecked lastPosChecked ++ 11)) // app app->->DataData--
>>SampleRateExSampleRateEx));;
 }}
 lastPosChecked lastPosChecked++++;;
 }}
 returnreturn S_OK S_OK;;
}}

Because vector channels are always of asynchronous type, we also have to change the getSyncChannels() method to
getAsyncChannels() which will return all asynchronous channels. Do not forget to change the name of the method in
dewesoft_bridge.h file and in setup_window.cpp where we call this method.

38

stdstd::::vectorvector<<IChannelPtrIChannelPtr>> DewesoftBridge DewesoftBridge::::getAsyncChannelsgetAsyncChannels(())
{{
 std std::::vectorvector<<IChannelPtrIChannelPtr>> allChannels allChannels;;

 app app->->DataData->->BuildChannelListBuildChannelList(());;
 IChannelListPtr channels IChannelListPtr channels == app app->->DataData->->UsedChannelsUsedChannels;;

 forfor ((intint i i == 00;; i i << channels channels->->CountCount;; i i++++))
 ifif ((channelschannels->->GetItemGetItem((ii)) !=!= outputChannel outputChannel &&&& channels channels->->GetItemGetItem((ii))->->AsyncAsync))
 allChannels allChannels..push_backpush_back((channelschannels->->GetItemGetItem((ii))));;

 returnreturn allChannels allChannels;;
}}

Since our Input channel will now be a vector channel, we also have to make changes to addChannelsToCBoxaddChannelsToCBox(()) method. We
will change this method so the inputChannelCBoxinputChannelCBox will only accept vector inputs and the criteriaChannelCBoxcriteriaChannelCBox will only
accept scalar inputs.

voidvoid SetupWindow SetupWindow::::addChannelsToCBoxaddChannelsToCBox(())
{{
 criteriaChannelCBox criteriaChannelCBox..clearclear(());;
 inputChannelCBox inputChannelCBox..clearclear(());;

 std std::::vectorvector<<IChannelPtrIChannelPtr>> allChannels allChannels == bridge bridge..getAsyncChannelsgetAsyncChannels(());;
 forfor ((intint i i == 00;; i i << allChannels allChannels..sizesize(());; i i++++))
 {{
 std std::::string channelName string channelName == allChannels allChannels[[ii]]->->NameName;;
 ifif ((allChannelsallChannels[[ii]]->->ArrayChannelArrayChannel))
 inputChannelCBox inputChannelCBox..addItemaddItem((channelNamechannelName));;
 elseelse
 criteriaChannelCBox criteriaChannelCBox..addItemaddItem((channelNamechannelName));;
 }}
}}

39

Example II: Saving and loading settings
Let's now start modifying our project. The reason for removing the non-Dewesoft logic from dewesoft_bridge.cpp file will be
seen soon, but not just yet.

It may be annoying for you to select channels, enter criteria limit and determine rising or falling edge every time you start your
plugin in Dewesoft. There is no need to do that anymore because C++ Plugin allows you to store and save your plugin settings
in an XML file. In our case, we should save information about Criteria limit, Input channel name and Criteria channel name. To
save enum settings we will change it to an integer and save it using WriteIntegerWriteInteger function.

Storing is done with methods that contain Write prefix (e.g. WriteInteger) and reading is done with methods that
contain Read prefix (e.g. ReadInteger). We will use class member doc which is automatically set. Parameters for Write and
Read methods depend on data type which should be saved, but we can generalize it for every data type.

The first parameter is the pointer to the node which Dewesoft uses. This parameter is the same for every type.
The second parameter is the name of XML element under which your setting is saved. This parameter should be unique
for every setting.
The third parameter is the actual value to be stored.
The fourth parameter is the default value to be stored if the actual value is not yet initialized.

We will save plugin settings when setup is saved and load them when a new setup is loaded.

Storing our settings inside dewesoft_bridge.cpp file is done in onSaveSetup as seen in the code below.

voidvoid DewesoftBridge DewesoftBridge::::onSaveSetuponSaveSetup((constconst Setup Setup&& setup setup))
{{
 autoauto node node == setup setup..getNodegetNode(());;
 node node->->writewrite(("criteriaLimit_vector""criteriaLimit_vector",, getCriteriaLimitgetCriteriaLimit(()),, 00));;
 node node->->writewrite(("inputChannelName_vector""inputChannelName_vector",, getInputChannelNamegetInputChannelName(())..c_strc_str(()),, """"));;
 node node->->writewrite(("criteriaChannelName_vector""criteriaChannelName_vector",, getCriteriaChannelNamegetCriteriaChannelName(())..c_strc_str(()),, """"));;
 node node->->writewrite(("edgeType_vector""edgeType_vector",, getEdgeTypegetEdgeType(()),, 00));;Â Â Â Â Â Â
}}

Loading our settings inside dewesoft_bridge.cpp file is done as seen in the code below. We need to set the default values in
Read methods because onLoadSetup method is also called when a new plugin is created and XML elements (in node variable)
do not even exist yet. They are first added when the plugin is saved. Therefore names for our Input and Criteria channel will be
"" until the user chooses a channel name in ComboBox.

40

voidvoid DewesoftBridge DewesoftBridge::::onLoadSetuponLoadSetup((constconst Setup Setup&& setup setup))
{{
 constconst autoauto node node == setup setup..getNodegetNode(());;

 floatfloat criteriaValue criteriaValue == 00;;
 node node->->readread(("criteriaLimit_vector""criteriaLimit_vector",, criteriaValue criteriaValue,, 00));;
 setCriteriaLimitsetCriteriaLimit((criteriaValuecriteriaValue));;

 node node->->readread(("inputChannelName_vector""inputChannelName_vector",, inputChannelName inputChannelName,, """"));;
 node node->->readread(("criteriaChannelName_vector""criteriaChannelName_vector",, criteriaChannelName criteriaChannelName,, """"));;

 longlong edgeTypeVectorIndex edgeTypeVectorIndex;;
 node node->->readread(("edgeType_vector""edgeType_vector",, edgeTypeVectorIndex edgeTypeVectorIndex,, 00));;
 edgeType edgeType == edgeTypeVectorIndex edgeTypeVectorIndex ==== 00 ?? RisingEdge RisingEdge :: FallingEdge FallingEdge;;

 mountChannelsmountChannels(());;
}}

We will also create a public method which will be used to fill input fields in SetupWindow class.

//setup_window.h//setup_window.h
voidvoid setSavedValuessetSavedValues(());;

// setup_window.cpp// setup_window.cpp

voidvoid SetupWindow SetupWindow::::setSavedValuessetSavedValues(())
{{
 inputChannelCBox inputChannelCBox..setSelectedIndexsetSelectedIndex((inputChannelCBoxinputChannelCBox..getIndexOfgetIndexOf((bridgebridge..getInputChannelNamegetInputChannelName(())))));;

criteriaChannelCBoxcriteriaChannelCBox..setSelectedIndexsetSelectedIndex((criteriaChannelCBoxcriteriaChannelCBox..getIndexOfgetIndexOf((bridgebridge..getCriteriaChannelNamegetCriteriaChannelName(())))));;

 latchCriteriaTBox latchCriteriaTBox..setTextsetText((stdstd::::to_stringto_string((bridgebridge..getCriteriaLimitgetCriteriaLimit(())))));;

 edgeTypes savedEdgeType edgeTypes savedEdgeType == bridge bridge..getEdgeTypegetEdgeType(());;
 ifif ((savedEdgeType savedEdgeType ==== RisingEdge RisingEdge))
 risingEdgeRButton risingEdgeRButton->->setIsCheckedsetIsChecked((risingEdgeRButtonrisingEdgeRButton..getIsEnabledgetIsEnabled(())));;
 elseelse
 fallingEdgeRButton fallingEdgeRButton->->setIsCheckedsetIsChecked((fallingEdgeRButtonfallingEdgeRButton..getIsEnabledgetIsEnabled(())));;
}}

Input fields should also be filled every time when the plugin user interface is entered so the user will not have to set channel
names and Criteria limit again.

41

voidvoid DewesoftBridge DewesoftBridge::::onSetupEnteronSetupEnter(())
{{
 setupWindow setupWindow->->addChannelsToCBoxaddChannelsToCBox(());;
 setupWindow setupWindow->->setSavedValuessetSavedValues(());;
}}

When Dewesoft is now opened and saved setup is loaded, saved values will load automatically.

42

Example II: Vector latch math
Now that we know what Example II is about, we are ready to start with the main code: the code for handling vector channels.

In order to create our Output channel to support vectors, we will have to modify its mounting inside Dewesoft. It will accept an
array containing values of the type Single. That is why we have to set the channel's dimension (property DimCountDimCount) to 1. If we
would need our Output channel to support matrix samples, we would have set DimCountDimCount property to 2. We also set the size
of the vector we want to output. In this method, we will set it to 1 and we will change this property later to fit the size of the
input vectors.

voidvoid DewesoftBridge DewesoftBridge::::mountChannelsmountChannels(())
{{
 constconst std std::::vectorvector<<intint>> chIndexVector chIndexVector == {{11}};;
 outputChannel outputChannel == pluginGroup pluginGroup->->MountChannelExMountChannelEx((pluginGuidpluginGuid,, longlong((chIndexVectorchIndexVector..sizesize(()))),,
fromStdVecfromStdVec((chIndexVectorchIndexVector))));;

 outputChannel outputChannel->->SetDataTypeSetDataType((longlong((ChannelDataTypeChannelDataType::::SingleSingle))));;
 outputChannel outputChannel->->Name Name == "Latch""Latch";;
 outputChannel outputChannel->->Unit_ Unit_ == """";;
 outputChannel outputChannel->->SetAsyncSetAsync((truetrue));;
 outputChannel outputChannel->->ExpectedAsyncRate ExpectedAsyncRate == 55;;
 outputChannel outputChannel->->Used Used == true true;;
 outputChannel outputChannel->->ArrayChannel ArrayChannel == true true;;

 outputChannel outputChannel->->ArrayInfoArrayInfo->->DimCount DimCount == 11;;
 outputChannel outputChannel->->ArrayInfoArrayInfo->->DimSizesDimSizes[[00]] == 11;;
 outputChannel outputChannel->->ArrayInfoArrayInfo->->InitInit(());;
}}

Every time we make changes to the dimension of the array channel by setting the DimCount or DimSizes properties, we need
to call the Init() method.

There is one thing we need to keep an eye on: ExpectedAsyncRateExpectedAsyncRate property of our output channel. This warrants a slight
detour:

Expected async rate per second
If our module contains asynchronous output channels, we have to set their expected rate per second. You can think of this as
"approximately how many samples will I be adding to this channel per second". We can change the value of this setting in
DewesoftBridgeDewesoftBridge::::mountChannelsmountChannels(()) by modifying the channel's ExpectedAsyncRateExpectedAsyncRate. This setting is required because
we need to help Dewesoft figure out much memory it needs to reserve for our channel. While we can calculate this value in any
way we want, it can be useful if we know the rate of our output channel is somehow going to be connected to the rate of some
other input channel, in which case we can simply set the outputChanneloutputChannel->->ExpectedAsyncRateExpectedAsyncRate to inputChannelinputChannel--
>>ExpectedAsyncRateExpectedAsyncRate.

We can set ExpectedAsyncRateExpectedAsyncRate to a completely arbitrary value, but if the ExpectedAsyncRateExpectedAsyncRate is set too high Dewesoft
will reserve too much memory and if it is set too low we might lose some important data. We don't need to set
ExpectedAsyncRateExpectedAsyncRate to the exact value, but we need to specify it to within an order of magnitude.

43

Note that since our output channel is now a vector channel, Dewesoft will be reserving ArrayInfoArrayInfo->->ArraySizeArraySize times as
much memory as it would if the channel were a simple scalar channel; so we have to be extra careful to not put in a number
that is too high.

44

Method DewesoftBridgeDewesoftBridge::::onEstablishConnectionsonEstablishConnections(()) is called when the acquisition is started (this occurs when ch. setup
is entered). In this method, we will retrieve the Input and Criteria channels by their names. If names are not yet set (this will
happen every time when no channel had been set in ComboBoxes containing channel names), we do not set any channels.

STDMETHODIMP DewesoftBridgeSTDMETHODIMP DewesoftBridge::::onEstablishConnectionsonEstablishConnections(())
{{
 setInputChannelsetInputChannel((inputChannelNameinputChannelName..c_strc_str(())));;
 setCriteriaChannelsetCriteriaChannel((criteriaChannelNamecriteriaChannelName..c_strc_str(())));;

 returnreturn S_OK S_OK;;
}}

As mentioned before, we still need to set the size of the vectors we want to output. This needs to be done before Dewesoft
reserves space to run our plugin, so we have to add an event that gets triggered before this happens. This event is called
evPreInitiateevPreInitiate and we need to add it to plugin_impl.cpp file, where we also define the method that gets triggered when this
event happens. The method needs to be declared in the plugin_impl.h file.

// plugin_impl.h// plugin_impl.h
//IPlugin4//IPlugin4
STDMETHODIMP STDMETHODIMP eventBeforeReserveMemoryeventBeforeReserveMemory(());;

// plugin_impl.cpp// plugin_impl.cpp
STDMETHODIMP PluginSTDMETHODIMP Plugin::::raw_OnEventraw_OnEvent((enumenum EventIDs eventID EventIDs eventID,, VARIANT inParam VARIANT inParam,, VARIANT VARIANT** outParam outParam))
{{
 // ...// ...
 switchswitch ((eventIDeventID))
 {{
 // ...// ...
 casecase evPreInitiate evPreInitiate::
 returnValue returnValue == eventBeforeReserveMemoryeventBeforeReserveMemory(());;
 breakbreak;;
 // ...// ...
 returnreturn returnValue returnValue;;
}}

STDMETHODIMP PluginSTDMETHODIMP Plugin::::eventBeforeReserveMemoryeventBeforeReserveMemory(())
{{
 returnreturn bridge bridge..onBeforeReserveMemoryonBeforeReserveMemory(());;
}}

As we see in the code above the method that gets triggered when evPreInitiate happens triggers a method defined in
DewesoftBridge. We will add the declaration and definition of this method to the bridge.

45

// dewesoft_bridge.h// dewesoft_bridge.h
STDMETHODIMP STDMETHODIMP onBeforeReserveMemoryonBeforeReserveMemory(());;

// dewesoft_bridge.cpp// dewesoft_bridge.cpp
STDMETHODIMP DewesoftBridgeSTDMETHODIMP DewesoftBridge::::onBeforeReserveMemoryonBeforeReserveMemory(())
{{
 ifif ((!!inputChannelinputChannel))
 returnreturn S_OK S_OK;;

 outputChannel outputChannel->->ArrayInfoArrayInfo->->DimCount DimCount == 11;;
 outputChannel outputChannel->->ArrayInfoArrayInfo->->DimSizesDimSizes[[00]] == inputChannel inputChannel->->ArraySizeArraySize;;
 outputChannel outputChannel->->ArrayInfoArrayInfo->->InitInit(());;
 outputChannel outputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]->->Name Name == inputChannel inputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]->->NameName;;
 outputChannel outputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]->->_Unit _Unit == inputChannel inputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]->->_Unit_Unit;;

 outputChannel outputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]->->AxisType AxisType == atFloatLinearFunc atFloatLinearFunc;;
 outputChannel outputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]->->StartValue StartValue == inputChannel inputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]--
>>StartValueStartValue;;
 outputChannel outputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]->->StepValue StepValue == inputChannel inputChannel->->ArrayInfoArrayInfo->->AxisDefAxisDef[[00]]--
>>StepValueStepValue;;

 returnreturn S_OK S_OK;;
}}

We have now successfully mounted an output channel to Dewesoft, set its axis values, and updated the Output channel to
support outputting vector values from the Input channel. All there is left to do is to actually output vector values to the Output
channel.

This will be done inside onGetDataonGetData(()) method. For precautionary reasons, we also check if the Input channel or Criteria
Channel is nullptr, otherwise, the Input channel could be uninitialized when new setup was created. To insert data to the Output
channel we will use the method AddAsyncDataAddAsyncData((......)) which allows insertion of a vector to the Output channel.

46

STDMETHODIMP DewesoftBridgeSTDMETHODIMP DewesoftBridge::::onGetDataonGetData(())
{{
 ifif ((!!inputChannel inputChannel |||| !!criteriaChannelcriteriaChannel))
 returnreturn S_OK S_OK;;

 ifif ((inputChannelinputChannel->->DBDataSize DBDataSize ==== 00 |||| criteriaChannel criteriaChannel->->DBDataSize DBDataSize ==== 00))
 returnreturn S_OK S_OK;;

 intint blockSizeCriteriaChannel blockSizeCriteriaChannel ==
 ((criteriaChannelcriteriaChannel->->DBPos DBPos -- ((lastPosChecked lastPosChecked %% criteriaChannel criteriaChannel->->DBBufSizeDBBufSize)) ++ criteriaChannel criteriaChannel--
>>DBBufSizeDBBufSize)) %% criteriaChannel criteriaChannel->->DBBufSizeDBBufSize;;

 forfor ((intint i i == 00;; i i << blockSizeCriteriaChannel blockSizeCriteriaChannel -- 11;; i i++++))
 {{
 floatfloat currentSampleCriteriaChannel currentSampleCriteriaChannel == criteriaChannel criteriaChannel->->DBValuesDBValues[[lastPosChecked lastPosChecked %%
criteriaChannelcriteriaChannel->->DBBufSizeDBBufSize]];;
 floatfloat nextSampleCriteriaChannel nextSampleCriteriaChannel == criteriaChannel criteriaChannel->->DBValuesDBValues[[((lastPosChecked lastPosChecked ++ 11)) %%
criteriaChannelcriteriaChannel->->DBBufSizeDBBufSize]];;

 bool crossedEdgeCriteria bool crossedEdgeCriteria ==
protutorial_latchmath_vectorprotutorial_latchmath_vector..checkCrossedEdgeCriteriacheckCrossedEdgeCriteria((currentSampleCriteriaChannelcurrentSampleCriteriaChannel,,
 nextSampleCriteriaChannel nextSampleCriteriaChannel,,
 criteriaLimit criteriaLimit,,
 edgeType edgeType));;
 ifif ((crossedEdgeCriteriacrossedEdgeCriteria))
 {{
 doubledouble time time == criteriaChannel criteriaChannel->->DBTimeStampDBTimeStamp[[((lastPosChecked lastPosChecked ++ 11)) %% criteriaChannel criteriaChannel->->DBBufSizeDBBufSize]];;

 intint posInputChannel posInputChannel == ((inputChannelinputChannel->->DBPos DBPos -- 11));;

 // reading vector from channel// reading vector from channel
 std std::::vectorvector<<floatfloat>> results results;;
 forfor ((intint j j == 00;; j j << outputChannel outputChannel->->ArraySizeArraySize;; j j++++))
 {{
 floatfloat value value == inputChannel inputChannel->->DBValuesDBValues[[posInputChannel posInputChannel ** inputChannel inputChannel->->ArraySize ArraySize ++ j j]];;
 results results..push_backpush_back((valuevalue));;
 }}

 ifif ((outputChanneloutputChannel))
 outputChannel outputChannel->->AddAsyncDataAddAsyncData((fromStdVecfromStdVec((resultsresults)),, time time));;
 }}
 lastPosChecked lastPosChecked++++;;
 }}
 returnreturn S_OK S_OK;;
}}

47

Example II: Debugger
Because C++ Plugin uses Visual Studio IDE, it supports really efficient debugging. It helps you find semantic errors, see variable
values in real-time, set breakpoints, add watches on variables to see values changing, and much more.

If we now run our plugin by pressing the F5 on the keyboard, load the setup we created for testing the plugin and assign the
channels as seen in image 29.

Then enter the Measure mode in Dewesoft we quickly get an error message.

We can see that the error is thrown in the OnGetDataOnGetData(()) method. We will now set a breakpoint inside of this method, start our
plugin with F5 keystroke again and go to Measure tab. When the program execution reaches our breakpoint we will be able to

48

look at every line of code to find out, which one is causing our plugin to crash. To move to the next line use the F10 keystroke
(this will step over function calls).

We will try to find the error using Visual Studio Debugger.

After some iterations, we can see that posInputChannelposInputChannel has a value of -1 when the last position of the Input channel is 0.
This happens because the data in channels is stored in circular buffers and when we try to access the channel values using
the inputChannelinputChannel->->DBValuesDBValues[[......]] we get an error.

49

Debugging will not always be that easy. In this case, Call stack (the window in the bottom-right corner) is something to keep an
eye on. It will show you how methods were called and allow you to step up the stack by clicking the call stack line to see the
actual call.

Now we know what is the source of the problem, so we are able to fix it. We change the posInputChannels to first check if the
position of the last value received in the Input channels is 0, and if it is, the value we want to output is not -1 but it is the last
element of the buffer.

intint posInputChannel posInputChannel == inputChannel inputChannel->->DBPos DBPos !=!= 00 ?? inputChannel inputChannel->->DBPos DBPos -- 11 :: inputChannel inputChannel->->DBBufSizeDBBufSize
-- 11;;

50

Example II: Unit testing
One of the important stages of plugin development is testing. Luckily, C++ Plugin allows you to run automated unit tests, which
will shorten your testing time. Unit testing is a software testing method that tests your plugin by running predefined test cases
and checking if the result is correct.

Unit testing is one of the main reasons for separating the Dewesoft logic (defined inside DewesoftBridge) and non-Dewesoft
logic (defined inside proTutorial_LatchMath_vectorPluginLib).

We can now test each segment without having to start Dewesoft. In order to perform unit tests, you have to set
proTutorial_LatchMath_vectorPluginTest as your startUp project (right clicking it and clicking on set as startUp project). We
will get rid of sample code so we will only test functions which we need. Every test is written inside
protutorial_latchmath_vector_item_test.cpp file.

We will create two simple unit tests, to test our method checkCrossedEdgeCriteriacheckCrossedEdgeCriteria((......)) . If the returned value is the same
as the one set, the unit test will output "PASSED".

Here you can see two examples of a unit test (both should successfully pass).

51

TEST_FTEST_F((proTutorial_LatchMath_vectorItemTestproTutorial_LatchMath_vectorItemTest,, CheckCriteriaLimitRisingEdge CheckCriteriaLimitRisingEdge))
{{
 proTutorial_LatchMath_vector protutorial_latchmath_vector proTutorial_LatchMath_vector protutorial_latchmath_vector;;

 floatfloat currentSampleCriteriaChannel currentSampleCriteriaChannel == 0.490.49;;
 floatfloat nextSampleCriteriaChannel nextSampleCriteriaChannel == 0.510.51;;
 floatfloat criteriaLimit criteriaLimit == 0.50.5;;
 intint edgeType edgeType == 00;; // RisingEdge// RisingEdge

 bool crossedEdgeCriteria bool crossedEdgeCriteria ==
protutorial_latchmath_vectorprotutorial_latchmath_vector..checkCrossedEdgeCriteriacheckCrossedEdgeCriteria((currentSampleCriteriaChannelcurrentSampleCriteriaChannel,,
 nextSampleCriteriaChannel nextSampleCriteriaChannel,,
 criteriaLimit criteriaLimit,,
 edgeType edgeType));;
 ASSERT_TRUEASSERT_TRUE((crossedEdgeCriteriacrossedEdgeCriteria));;
}}

TEST_FTEST_F((proTutorial_LatchMath_vectorItemTestproTutorial_LatchMath_vectorItemTest,, CheckCriteriaLimitFallingEdge CheckCriteriaLimitFallingEdge))
{{
 proTutorial_LatchMath_vector protutorial_latchmath_vector proTutorial_LatchMath_vector protutorial_latchmath_vector;;

 floatfloat currentSampleCriteriaChannel currentSampleCriteriaChannel == --0.120.12;;
 floatfloat nextSampleCriteriaChannel nextSampleCriteriaChannel == 0.010.01;;
 floatfloat criteriaLimit criteriaLimit == 00;;
 intint edgeType edgeType == 11;; // FallingEdge// FallingEdge

 bool crossedEdgeCriteria bool crossedEdgeCriteria ==
protutorial_latchmath_vectorprotutorial_latchmath_vector..checkCrossedEdgeCriteriacheckCrossedEdgeCriteria((currentSampleCriteriaChannelcurrentSampleCriteriaChannel,,
 nextSampleCriteriaChannel nextSampleCriteriaChannel,,
 criteriaLimit criteriaLimit,,
 edgeType edgeType));;
 ASSERT_FALSEASSERT_FALSE((crossedEdgeCriteriacrossedEdgeCriteria));;
}}

To see the result of unit tests, we have to start your project. The result is outputted in the command prompt, which terminates
after the testing is completed. In order for the command prompt to stay visible, we should place a breakpoint right
before returnreturn res res;; line of code in main.cpp file. In the picture below you can see an example of setting a breakpoint.

The output in the command prompt should look like that.

52

53

Example II: Output
If you now start your plugin and set your Input channel to AI 1/AmplFFT and Criteria channel to sine(1), as seen in the image
35.

You will be able to see the outputted vectors on a 3D graph. A new vector is outputted every time the sine(1) signal passes the
value 0.5 on the rising edge.

54

As you can see, whenever sine(1) crosses the Criteria limit, we output the last vector sample from our input channel
AI1/AmplFFT to our Output channel.

55

How to Import/Export the C++ plugin?
In this Pro Training, we have created a pretty useful plugin, which inserts samples into our Output channel. We might want to
use it in other setups or on other computers. C++ Plugin packs your plugin into an external library, which can be inserted into
any Dewesoft around the world.

Your C++ Plugin is found inside a file with .dll extension (it contains instructions that Dewesoft can call upon to do certain
things, based on the purpose of your plugin). To export it, you need to locate the .dll file first. It can be found inside
DEWESoftX\DEWEsoft\Bin\Addons folder.

To import your plugin you have to copy and paste file with .dll extension into any Dewesoft that requires your plugin. You need
to paste it inside Addons folder so Dewesoft will be able to automatically recognize and load it.

Your C++ Plugin also creates a file with the .pdb extension, which contains instructions for your debugger. It is not necessary
to export it with your .dll file in order for your plugin to work, but in case the imported plugin will be debugged, copying it
together with a .dll file is a good idea.

56

Comparison with the other ways of extending Dewesoft
At this point, you might have a pretty good grasp on how to use C++ Script. But C++ Script is just one of many ways of
extending Dewesoft to suit your needs, and it might be slightly confusing to try and figure out if it actually is the best solution
for your task. So in this section, we briefly compare different approaches and list a couple of pros and cons which can
hopefully help you pick the right tool.

Just a quick reminder: Dewesoft is a big software. It is always worth trying to figure out if Dewesoft can already do whatever
you need out of the box, because if it can, you will waste very little of your time, and will have full support from Dewesoft team
if anything doesn't work as expected.

Extention Description

Formula

If you want to manipulate channels in a simple way, the Formula module is usually the best one to
start experimenting with. Because of its ease of use, it can serve as a great starting point for quick
prototyping, and it is usually good enough for most typical problems (signal generation, simple
manipulation of data in channels, etc.).

C++ Script

During its development, we mainly envisioned C++ Script as a tool to create custom math modules
that you could export and use just like standard Dewesoft modules. C++ Script is probably a good
second step after your approach with Formula modules gets too complicated, too cluttered, or, in the
worst case, you cannot figure out how to solve the problem with them.

Plugins

If you want to develop anything other than math modules, or if you tried creating a module with C++
Script and it proved to not be fast or powerful enough, or if you want to create a completely custom
GUI for your module, Plugins are the right way to go. With Dewesoft Plugins you get access to entire
Dewesoft from your code, including direct access to buffers behind channels, making Plugins
incredibly fast compared to C++ Script.

Sequencer / DCOM

Sequencer and DCOM are slightly different than the other 3 approaches mentioned in this section.
Regardless, they serve a very useful purpose and deserve to be mentioned here: they are used to
automate a person clicking on different parts of the Dewesoft UI. The difference among them is that
with Sequencer you can create sequences by dragging and dropping graphical blocks (requiring little
to no experience with programming) while with DCOM you need to use a programming language.
Sequencer is easier to use, but you get much more control with DCOM.

Extention PROS CONS

Formula

- The most intuitive of all the approaches, very simple to
use.

- Integrated fully into Dewesoft meaning no set up required
to get running.

- Input channels are fixed in the formula,
making reusability a lot of work.

- While it supports combining arbitrarily
many input channels, it always produces
just one output channel.

- Poor support for non-scalar channels.

C++ script

- Dewesoft setups look much nicer as you (usually) only
need one C++ Script to solve a problem that would require a
bunch of Formula modules

- Reusability and generality of your module: you can hide the
code from the end-user and only expose the Published
setup tab.

- It can work with an arbitrary amount of input and output
channels.

- Requires familiarity with at least basics
of programming in C++.

- Difficult to test and debug.

57

Plugins

- Much easier to write nice code with proper unit tests.

- Full control over the creation of GUI, access to Dewesoft
internals, and blazing fast.

- It can be used to create custom export formats, custom
visual controls, add support for additional acquisition
devices, ...

- Made to work with Visual Studio, giving you access to a
great debugger, code completion, and other static analysis
tools.

- Requires Visual Studio.

- Much harder to learn to use than C++
Script.

Sequencer / DCOM

- It can be used to create an automated sequence of events
in Dewesoft.

- Creator of the sequence can hide the details from the end-
user, exposing only a simple user interface to control
Dewesoft.

/

58

	Table of Contents
	Introduction to Basic custom plugin development in C++
	How to Install the Dewesoft plugin template?
	Example: Latch math
	Signals for testing our module
	Example: New C++ Plugin
	Example I: Creating custom UI
	MUI Designer
	Example I: Accessing the UI component using C++
	Example I: Handling events
	Example I: DewesoftBridge
	DewesoftBridge::mountChannels()
	Dewesoft::onStartData()
	DewesoftBridge::onGetData()
	Example I: Output result
	Example II: Vector latch math explanation
	Channel types
	Signals for testing our module
	From Example I to Example II
	Example II: Saving and loading settings
	Example II: Vector latch math
	Expected async rate per second
	Example II: Debugger
	Example II: Unit testing
	Example II: Output
	How to Import/Export the C++ plugin?
	Comparison with the other ways of extending Dewesoft

