
www.dewesoft.com - Copyright © 2000 - 2025 Dewesoft d.o.o., all rights reserved.

C++ Script

What is C++ Script?
Did you ever want to perform some calculations on a signal inside of Dewesoft but couldn't find the right module/function?

Ever struggled with implementing a non-trivial algorithm and ended up with a mess of formula modules (only for it to not work
because of limitations of the formula module)?

With the help of the C++ Script, you can write your own math module that can do exactly what you want, and can be
imported into any setup you might need it in. You can take nearly arbitrarily many input channels, process the data using very
simple abstractions in modern C++, and output the results into arbitrarily many output channels.

The way C++ Script works behind the scenes is it takes your C++ code and compiles it into an external library which
Dewesoft can automatically load and communicate with. It then continuously fills the data from the input channels and,
based on the code you wrote inside the C++ Script, outputs the processed data into output channels, taking care of the hard
part of handling communication with Dewesoft for you.

All the examples of C++ Scripts we will create in this tutorial and the setups we will use are available on Dewesoft's
webpage under Support > Developer Downloads > Example C++ scripts (note that you have to be logged in to access the
C++ Script section), so while you are highly encouraged to follow along on your own, you can refer to that if you get lost.

1

https://downloads.dewesoft.com/developers/example-bundles-cpp-scripts.zip

How to install the C++ Script?
C++ Script is available to Dewesoft users by default in Dewesoft X3 software versions SP6 and on. Since we want to write
our own custom C++ Scripts, the one thing you need to do is make sure you enable DSMinGW option under External
Dependencies during the installation of Dewesoft with an online version of the installer (offline versions don't have this
option, but you can always install DSMinGW manually, as described below).

DSMinGW is a package of compilers for C++ that allows you to write and compile your own C++ Scripts in Dewesoft.

If you didn't install DSMinGW during the installation of Dewesoft, you can always go to Windows' Apps & features (or, Add or
remove programs in older versions of Windows), find and click on Dewesoft, and finally on Modify button. There you will be
able to modify your installation and include DSMinGW.

2

3

Alternatively you can also install DSMinGW manually by downloading the installer from the Dewesoft webpage
under Support > Downloads > Developers > C++ Script.

Older versions of Dewesoft (before X3 SP6)
In order to write custom C++ Scripts in Dewesoft before X3 SP6, you need to manually install DSMinGW on your system.
You can download the package on the Dewesoft webpage under Support > Downloads > Developers > C++ Script.

C++ Script can be found among experimental features in Dewesoft starting from X3 SP4, so you have to manually enable it.
To do that, navigate to Dewesoft's Options and click on Settings, then select Advanced and finally Experimental subsections.
There you will be able to find a checkbox C++ Script (Math) under Features; click it so that a checkmark appears next to it,
click Ok, and restart Dewesoft.

4

https://download.dewesoft.com/list/2/190
https://download.dewesoft.com/list/2/190

5

C++ Example: Latch math
To get a better feel for both the use cases and the simplicity of C++ Script we will implement a latch math module. The
example will serve to demonstrate a lot of different capabilities of C++ Script in a (hopefully) easily understandable way.

Latch math outputs the value of an input channel when some other input channel crosses some predefined criteria . An
example use case of this module could be to monitor your car engine RPM as you pass 100 km/h: we just set the first input
channel to engine RPM, the second input channel to the channel with our car's current speed, and set the criteria to 100
km/h.

Given this, at the end of the example we should end up with a working module that allows you to select two input channels,
one to look for latch criteria points and one from which the outputted values will be read, and produce an output channel
with these values.

Signals for testing our module
Before we begin creating our C++ Script, let's first create the two input signals we will use to test it.

The first signal will be the one we will use to look for criteria limit crossing. For our testing purposes, this signal will be a
sine with a frequency of 1 Hz. We can create it by clicking the Formula button next to the Add math button and add sine
function from the Signal tab. Let's name it "sine(1)".

6

The second signal will be the one from which we read the values to output at the criteria limit. This signal will be the current
time. We add it by clicking the Formula button next to the Add math button and add time function from the Signal tab,
naming it "time".

Sample rate
Another thing we should take care of before we begin development is to lower the Dynamic acquisition rate.

During the development of your C++ Script module it is recommended to set the sample rate to some low value, primarily
for performance reasons. In case your script has any problems, it is much easier to recover and fix the error if it doesn't get
triggered e.g. 100 000 times/second.

We do this by clicking the Analog in button and in the drop-down list set Dynamic acquisition rate to e.g. 500 Hz.

7

C++ Example: Latch math - Create C++ script
To create a new C++ Script we click the Math button and Add Math button which appears underneath it. In the menu that
just opened up, we find the section called Formula and scripting and finally click on C++ Script.

A new C++ Script setup window will appear as it is shown on the image 8. The setup window has four tabs: Project tab,
Configure tab, Code editor tab, and Published setup tab. Our example will be split into steps, corresponding to these tabs.

Published setup
But before we get started, let's click on the Published setup tab. We can see that a user interface not too
dissimilar to other Math modules found in Dewesoft was automatically created; it has a section for input
channels, empty space for output channels below that, as well as a section for defining and changing
settings of our module. Since our module is currently empty, the form is also empty.

Project
In the Project tab, we are going to specify the module name, a brief description of what our module does,
and the version of our module. We proceed by filling out the Project name field with Latch math ,

8

Description with Module performing latch math and leave the Version fields as they are. Also fill out the
Developer first and last name, Email, and Company text fields with your information.

When we are done, click the Configure tab at the top of the setup window.

Configure
After clicking on the Configure tab the first thing we get to change is the general behavior of our module. We can choose
the calculation call and define the block size for our calculations. C++ Script can work in two modes: Sample-based, where
each new sample in the input channels triggers the calculation step, or Block based, where Dewesoft waits for Block size
new samples from input channels before calling our module. For our latch module example, we do not change the setting,
because we want our calculation to be performed for every new sample of the signal.

Let's say we want the user of our module to be able to specify 2 settings: whether he wants to latch the output on a rising
or falling edge (i.e. when the car is accelerating or decelerating), and the Criteria limit to determine which value the criteria
channel needs to pass before we output the value (i.e. the speed of the car we are interested in). Configure tab is exactly the
place where we can define user settings like that.

9

Published variables
Inside the Configure tab under Published variables, we can define various types of variables. The main idea behind defining
the variables here instead of directly in our C++ code is that these variables are accessible from the Published setup tab
and changing their values there does not require recompiling the code.

Under the Published variables tab click the button. This brings up a Variable setup form for defining our variables.

For start let's create a variable for deciding whether the latch condition is rising edge or falling edge on the signal. We do
this by first filling out the Variable name section of the setup. We define the C++ variable name as "edgeType" -- this
represents the name of the variable as it will later appear in the C++ code. We also define the Published name as "Type of
edge", and this represents the name of the variable as it will appear in the Published setup tab.

Every time we fill in a field labeled "C++ X'', we are setting the X inside the C++ code, and every time we fill in a "Published
Y'' field, we are changing Y in Published setup tab. Because "C++ X" fields need to be valid C++ variable names, we are not
allowed to use spaces and special characters (other than "_") or start the name with a number.

Now we move on to the Variable type section of the setup window. Here we choose the Variable type as "Enumeration" from
a drop-down list. After choosing "Enumeration" as our variable type a new section will appear where we input the values
user can choose from; in our case we create two values "risingEdge" and "fallingEdge". To add a new value we simply click

on the button. Now we can also define the Default value of our variable by choosing a value from the drop-down list.
Lastly we can add a Published description for our variable. After filling out the Variable setup window click the Apply button.

10

We also create another variable that our users will be able to change to control the value of the latch criteria. This variable
will be of the type float and after choosing this type a Numerical Settings section appears, where we define the minimum
and maximum numerical value user will be able to input for this variable in the Published setup tab.

11

The two published variables we created above can now be seen in the Published setup tab of the C++ Script setup window.
As we can see from the picture below, C++ Script automatically created a drop-down combo box for letting the user choose
the type of edge, as well as an edit field through which the user can set the value of the latch criteria.

12

13

C++ Example: Latch math - Input and Output channels

Input channels
Our latch math will need two input channels, one for detecting the trigger points at latch condition and one from which we
read the outputted values. So let's add them.

Under the Input channels tab click the button. This brings up a Variable setup form for configuring your input channel.
Change the C++ variable name to "criteriaChannelIn" and Published name to "Criteria channel". Leave Value type as Scalar
and Real, and tick the Synchronous check-box under Time base. Don't worry if you don't understand these settings yet as
we will explain the different types of channels later on in this training. Clicking Apply you should find that the table now has
a single row, containing "criteriaChannelIn" under the C++ variable name column and "(I) Sync Real Scalar" under Channel
type.

Now we create another Input channel with the C++ variable name "inputChannelIn" and Published name "Input channel".
Leave Value type as Scalar and Real and again tick the Synchronous check-box under Time base.

14

Clicking Apply you should find that the table now has two rows, containing "criteriaChannelIn" and "inputChannelIn" under
the C++ variable name column and "(I) Sync Real Scalar" under Channel type. This means your module is going to have two
channels of the synchronous type as input. Again, we will explain what exactly this means in one of the following sections.

Output channels
The output of our latch math module will be a channel holding the correct value of the second input signal whenever the
first input signal crosses the latch criteria. So let's create it.

Under Output channels tab you will be able to find a debug channel. Ignore it for now and click the button again. This
brings up a form with settings slightly resembling the settings for input channels. Change the C++ variable name to
"latchedChannelOut" and Published name to "Latch". Leave the Value type as Scalar and Real, change Time base to
Asynchronous and leave the Expected async rate per second as 10. Don't worry too much about the meaning of Expected
async rate per second setting either as it too will be explained in detail later on in the training. Clicking Apply creates a new
row in the table with the channel we just made.

15

In the Published setup tab, we can now see all the variables we created in the Configure tab, including the two currently
unassigned input channels, and the Published variables with their default values.

16

C++ Example: Latch math - Code editor tab
Now comes the time to actually implement the logic of our latch module. We do this in the Code editor tab.

One way our module could operate is by looking at every two consecutive samples in the criteria channel. As long as both
samples are below or above the criteria limit we will do nothing. But when the first sample is below the criteria limit and the
second sample is above it (in case of rising edge, swap the two for falling edge), this must mean we passed the criteria limit
and we will output the value from the input channel to the output channel.

Let's try implementing this logic.

Code
The very top of the template in a fresh C++ Script module contains the following line:

namespace bsc namespace bsc == Dewesoft Dewesoft::::MathMath::::ApiApi::::BasicBasic;;

All of C++ Scripts types and some of its structures reside in the DewesoftDewesoft::::MathMath::::ApiApi::::BasicBasic namespace. The line above
allows us to access them using the abbreviation bscbsc, making the code more readable.

The very next thing in the code template is a class called ModuleModule; this is the class we will fill out with our module's logic.

C++ Script interacts with Dewesoft by letting it invoke certain methods of our implemented ModuleModule code (all of which
come pre-populated in the C++ Scripts code editor by default) at specific predefined events. Hints about when exactly
Dewesoft calls each method are provided in the comments inside the Code editor.

17

In our example, we will only need to fill in the ModuleModule::::startstart(()) and ModuleModule::::calculatecalculate(()) methods. Since our
ModuleModule::::calculatecalculate(()) method is going to be called with exactly one new sample in the input channels, we will also need a
global variable for remembering the previous sample of criteria channel which we will use to check whether we crossed the
latch criteria of the rising or falling edge. We define this variable in class Module so we can store it between the calls to
ModuleModule::::calculatecalculate(()) :

class Moduleclass Module:: public bsc public bsc::::MathModuleMathModule
{{
 public public::
 ModuleModule(());;
 ~~ModuleModule(());;
 voidvoid configureconfigure(()) override override;;
 voidvoid startstart(()) override override;;
 voidvoid calculatecalculate(()) override override;;
 voidvoid clearclear(()) override override;;
 voidvoid stopstop(()) override override;;

 bsc bsc::::Scalar prevCriteriaChannelValue Scalar prevCriteriaChannelValue == 00;;
}};;

18

void Module::Start()
ModuleModule::::startstart(()) function gets called at the very start of the measurement. It should be used for lightweight tasks such as
initializing your variables. Here we initialize the global variable we created above.

inlineinline voidvoid Module Module::::startstart(())
{{
 prevCriteriaChannelValue prevCriteriaChannelValue == 00;;
}}

void Module::calculate()
ModuleModule::::calculatecalculate(()) function gets called repeatedly during the measurement mode. Remember when we set the
calculation call to "Sample based" in Configure tab? That told Dewesoft to call our ModuleModule::::calculatecalculate(()) method whenever
there is a new sample in input channels.

The code in the ModuleModule::::calculatecalculate(()) function looks like this:

inlineinline voidvoid Module Module::::calculatecalculate(())
{{
 // read new sample from Criteria channel// read new sample from Criteria channel
 bsc bsc::::Scalar currCriteriaChannelValue Scalar currCriteriaChannelValue == criteriaChannelIn criteriaChannelIn..getScalargetScalar((00));;

 // check if the two samples from Criteria channel are on different sides of Latch criteria// check if the two samples from Criteria channel are on different sides of Latch criteria
 bool crossedRisingEdgeCriteria bool crossedRisingEdgeCriteria == prevCriteriaChannelValue prevCriteriaChannelValue <=<= published published..latchCriterialatchCriteria
 &&&& currCriteriaChannelValue currCriteriaChannelValue >=>= published published..latchCriterialatchCriteria;;

 bool crossedFallingEdgeCriteria bool crossedFallingEdgeCriteria == prevCriteriaChannelValue prevCriteriaChannelValue >=>= published published..latchCriterialatchCriteria
 &&&& currCriteriaChannelValue currCriteriaChannelValue <=<= published published..latchCriterialatchCriteria;;

 // if user set the type of edge to rising edge and the Criteria channel crossed it// if user set the type of edge to rising edge and the Criteria channel crossed it
 // or user set the type of edge to falling edge and the Criteria channel crossed it// or user set the type of edge to falling edge and the Criteria channel crossed it
 ifif ((((publishedpublished..edgeType edgeType ==== risingEdge risingEdge &&&& crossedRisingEdgeCriteria crossedRisingEdgeCriteria))
 |||| ((publishedpublished..edgeType edgeType ==== fallingEdge fallingEdge &&&& crossedFallingEdgeCriteria crossedFallingEdgeCriteria))))
 {{
 // add the value of the current sample from Input channel to the Latched channel// add the value of the current sample from Input channel to the Latched channel
 bsc bsc::::Scalar currInputChannelValue Scalar currInputChannelValue == inputChannelIn inputChannelIn..getScalargetScalar((00));;
 latchedChannelOut latchedChannelOut..addScalaraddScalar((currInputChannelValuecurrInputChannelValue,, callInfo callInfo..endBlockTimeendBlockTime));;
 }}

 // in any case remember the value of current sample from the Input channel for the next calculation// in any case remember the value of current sample from the Input channel for the next calculation
callcall
 prevCriteriaChannelValue prevCriteriaChannelValue == currCriteriaChannelValue currCriteriaChannelValue;;
}}

From the code above notice a couple of things:

19

to access the channels from our code we use the same names as we defined them under C++ variable name in
Configure tab;
we can access and add the samples in the channels by invoking ..getScalargetScalar(()) and ..addScalaraddScalar(()) methods;
we can access the values of published variables from Published setup tab through a special publishedpublished struct by
using publishedpublished..XX; where X is again the name as defined under C++ variable name in Configure tab; and
we used a callInfocallInfo structure which contains four read-only variables that get updated before each call to
ModuleModule::::calculatecalculate(()) with the latest values. In our case, we use the callInfocallInfo..endBlockTimeendBlockTime which tells us the time
in seconds of the last new sample in input channels -- which in our case, since we only receive one new sample per
calculate call, is always the time that this sample arrived at.

You can click on the Structure and snippets bar on the right-hand side of the code editor to bring up the tree of all
structures Dewesoft has made available for you. By expanding nodes you will be able to find callInfocallInfo..endBlockTimeendBlockTime ,
criteriaChannelIncriteriaChannelIn, inputChannelIninputChannelIn and latchedChannelOutlatchedChannelOut with their respective methods for reading and writing
from the channels, as well as some other variables and methods we didnÃ¢â‚¬â„¢t mention.

Elements in the tree view can also be double-clicked to populate them in the code editor.

At the bottom of the Code editor tab we can find a panel called Compiler output where we see if our code compiled
successfully or not. In the latter case this panel would contain the compiler errors and warnings that occurred during the
compilation of our code.

20

21

C++ Example: Latch math - Published setup tab
We can now assign the signals we created before to the correct input channels. In the Input section of the window we can
see a table with our two input channels. To assign a signal to Criteria channel, click on the white cell under 1 and click on
the button. From the drop-down list choose the "sine(1)" channel, and repeat the same process for Input channel
only this time choose the "time" channel from the drop-down list.

Click the OK button at the very bottom of the setup form and do not forget to save your setup in Dewesoft.

Save your setup often during development! In case your module contains a serious bug that crashes Dewesoft, loading the
old setup is the only way to restore your progress.

On the image 20 it is seen how the setup should look inside the Math section.

22

It is perfectly normal for C++ Script's output channels in setup mode to have "No data", as Dewesoft doesn't call C++
Script's ModuleModule::::calculatecalculate(()) method during setup.

Initiate Dewesoft's measurement mode by clicking on the Measure tab and observe your channel with outputted values at
latch condition.

23

Example: Latch math - Output
From the picture below we can see that every time the sine signal passes 0 at the rising edge threshold, the output channel
outputs the current value of the time signal. The outputted value represents the time at which the sine signal passes 0.

Note that to get the exact picture below we turned Interpolate asynchronous channels option in the Drawing option of the
recorder setup off, to better demonstrate that our values are "latched".

We can now change the variables in the Published setup tab of the C++ Script setup to look for the latch criteria at the
falling edge at the value 0,5.

24

The closing of the module is instantaneous! The module doesn't get recompiled when we just change values in the
Published setup tab.

The results will now look like this:

25

26

C++ Example: Latch math - Code simplification
The code as presented in the section before will work, but it has one part which stands out: the way we access the
"previous" sample from the Criteria channel to see if our signal passed the Latch criteria. Remember that we do it by saving
the current sample to a temporary variable prevCriteriaChannelValueprevCriteriaChannelValue we made just for this purpose at the very end of
ModuleModule::::calculatecalculate(()) method. But since accessing more than one sample from input channels is a pretty useful feature in
general, C++ Script comes with a simpler way to do it. Instead of a special variable in our code, we can just set the
predefined module variable pastSamplesRequiredForCalculationpastSamplesRequiredForCalculation in ModuleModule::::configureconfigure(()) method to a value greater
than 0 (in our case 1, since we need just one additional sample from the past).

ModuleModule::::configureconfigure(()) is a special method in which you get a chance to override any settings from Configure tab, as well as
define a few additional ones. This can be useful if you want to change the properties depending on values set by user in
Published setup tab. If you choose to not modify any of the values inside ModuleModule::::configureconfigure(()) form, they take on the
default values as set in Configure tab.

With setting the pastSamplesRequiredForCalculationpastSamplesRequiredForCalculation to some value, our input channels contain this many additional
samples per call to ModuleModule::::calculatecalculate(()) from the past, and we can access them by simply calling ..getScalargetScalar((--ii)) where ii
is the index of the sample we want.

This means that the code in our ModuleModule::::configureconfigure(()) method should look like this:

inlineinline voidvoid Module Module::::configureconfigure(())
{{
 pastSamplesRequiredForCalculation pastSamplesRequiredForCalculation == 11;;
}}

And our code in ModuleModule::::calculatecalculate(()) will now look like this:

inlineinline voidvoid Module Module::::calculatecalculate(())
{{
 bsc bsc::::Scalar prevCriteriaChannelValue Scalar prevCriteriaChannelValue == criteriaChannelIn criteriaChannelIn..getScalargetScalar((--11));;
 bsc bsc::::Scalar currCriteriaChannelValue Scalar currCriteriaChannelValue == criteriaChannelIn criteriaChannelIn..getScalargetScalar((00));;

 bool crossedRisingEdgeCriteria bool crossedRisingEdgeCriteria == prevCriteriaChannelValue prevCriteriaChannelValue <=<= published published..latchCriterialatchCriteria
 &&&& currCriteriaChannelValue currCriteriaChannelValue >=>= published published..latchCriterialatchCriteria;;

 bool crossedFallingEdgeCriteria bool crossedFallingEdgeCriteria == prevCriteriaChannelValue prevCriteriaChannelValue >=>= published published..latchCriterialatchCriteria
 &&&& currCriteriaChannelValue currCriteriaChannelValue <=<= published published..latchCriterialatchCriteria;;

 ifif ((((publishedpublished..edgeType edgeType ==== risingEdge risingEdge &&&& crossedRisingEdgeCriteria crossedRisingEdgeCriteria))
 |||| ((publishedpublished..edgeType edgeType ==== fallingEdge fallingEdge &&&& crossedFallingEdgeCriteria crossedFallingEdgeCriteria))))
 {{
 bsc bsc::::Scalar currInputChannelValue Scalar currInputChannelValue == inputChannelIn inputChannelIn..getScalargetScalar((00));;
 latchedChannelOut latchedChannelOut..addScalaraddScalar((currInputChannelValuecurrInputChannelValue,, callInfo callInfo..endBlockTimeendBlockTime));;
 }}
}}

We can now remove the global variable prevCriteriaChannelValueprevCriteriaChannelValue from the ModuleModule::::startstart(()) and its definition from the

27

Module class.

If you ever need to access samples "from the future", you could similarly use futureSamplesRequiredForCalculationfutureSamplesRequiredForCalculation.
and access the samples in channels via ..getScalargetScalar((ii)) with ii greater or equal to callInfocallInfo..newSamplesCountnewSamplesCount.

Another way we could approach this
After mentioning the Block based calculation call in the previous sections, you might have thought about using that
functionality for our module. We could, for example, change the calculation call in Configure tab to Block based, set the
Block size to 2, and then check each pair of new samples inside ModuleModule::::calculatecalculate(()).

We could also change the Block size from within ModuleModule::::configureconfigure(()) by setting Module's blockSizeInSamplesblockSizeInSamples variable
to 2. Setting it to 1 is equivalent to setting Calculation call to Sample based.

Now we change the code in the Code editor tab to:

28

inlineinline voidvoid Module Module::::calculatecalculate(())
{{
 bsc bsc::::Scalar prevCriteriaChannelValue Scalar prevCriteriaChannelValue == criteriaChannelIn criteriaChannelIn..getScalargetScalar((00));;
 bsc bsc::::Scalar currCriteriaChannelValue Scalar currCriteriaChannelValue == criteriaChannelIn criteriaChannelIn..getScalargetScalar((11));;

 bool crossedRisingEdgeCriteria bool crossedRisingEdgeCriteria == prevCriteriaChannelValue prevCriteriaChannelValue <=<= published published..latchCriterialatchCriteria
 &&&& currCriteriaChannelValue currCriteriaChannelValue >=>= published published..latchCriterialatchCriteria;;

 bool crossedFallingEdgeCriteria bool crossedFallingEdgeCriteria == prevCriteriaChannelValue prevCriteriaChannelValue >=>= published published..latchCriterialatchCriteria
 &&&& currCriteriaChannelValue currCriteriaChannelValue <=<= published published..latchCriterialatchCriteria;;

 ifif ((((publishedpublished..edgeType edgeType ==== risingEdge risingEdge &&&& crossedRisingEdgeCriteria crossedRisingEdgeCriteria))
 |||| ((publishedpublished..edgeType edgeType ==== fallingEdge fallingEdge &&&& crossedFallingEdgeCriteria crossedFallingEdgeCriteria))))
 {{
 bsc bsc::::Scalar currInputChannelValue Scalar currInputChannelValue == inputChannelIn inputChannelIn..getScalargetScalar((11));;
 latchedChannelOut latchedChannelOut..addScalaraddScalar((currInputChannelValuecurrInputChannelValue,, callInfo callInfo..endBlockTimeendBlockTime));;
 }}
}}

This might seem like a good solution to achieve the same result, but if we think about it, it is not going to work correctly. We
said that Dewesoft will call ModuleModule::::calculatecalculate(()) method when there are exactly two new samples in the input channel,
which is problematic in our case. Our code only compares these two new samples to each other and tries to figure out if
the latch criteria was crossed.

But what happens if the latch criteria is not between the two samples in the current block but is instead between the last
sample of the previous block and the first sample of the current block? Those two samples will never get compared and we
won't notice we crossed the latch criteria, which means we won't get an output for this criteria point.

29

C++ Example II: Vector latch math
Our Latch math module can only accept scalar channels as input and can only output scalar samples.

But what if we wanted to latch a vector channel at some condition? We can not just assign this channel as our input
because the module will not accept it. Lucky for us quick prototyping is one of C++ Script's strong points and we don't have
to write the entire thing from scratch but just make some minor changes to our current module.

To understand which changes we need, let's first make a slight detour and explain the different types of channels in
Dewesoft.

Channel types
We can think of a channel in Dewesoft as a structure holding our signals. Channels can be split in two ways: the first split
is based on the value type of the channel, and the second one on its time base.

Based on their value type, channels can be split into:

scalar, vector, and matrix channels; where each of these could be
real, or complex channels.

This means that if you have e.g. a real vector channel all the samples in the channel are vectors (of same dimensions) with
real values. The table below shows the methods used to read from and write into different types of channels:

Channel type Reading Writing

Real
Scalar .getScalar() .addScalar()
Vector .getVector() .addVector()
Matrix .getMatrix() .addMatrix()

Complex
Scalar .getComplexScalar() .addComplexScalar()
Vector .getComplexVector() .addComplexVector()
Matrix .getComplexMatrix() .addComplexMatrix()

Based on their time base, channels can be split into:

synchronous;
asynchronous; and
single value.

Synchronous channels have equidistant time between consecutive samples. The time difference is defined by the
acquisition sample rate and channel's sample rate divider. Asynchronous channels, on the other hand, don't have this
restriction: the time between two consecutive samples can be arbitrary. Finally, single value channels don't care about time
at all, they only contain one single sample per entire measurement with no timestamp - meaning each new sample in the
single value channel simply overwrites the current value.

In Dewesoft only scalar channels can have synchronous time base.

For a more visual example, the following image shows a sine curve in channels with different time bases.
30

Signals for testing our module
With these terms explained, let's go back to our problem. Like we created scalar channels at the very start of the training,
let's now create some dummy vector channel for testing our modified module. One math module in Dewesoft that has
vectors as output is Fourier transform, so let's use that. We add a new Fourier transform setup from the Add math drop-
down list. We change the Resolution in Calculation parameters section to 256 lines (meaning the output vectors will have
256 elements) so as to not have too much data in our C++ Script during development, and click Ok.

31

32

Example II: Latch math - Changes in Configure tab
In the Configure tab we leave the Published variables as they are, and only make changes in the Input channels and Output
channels tabs.

In the Input channels tab, we change the Time base of the Criteria channel to Asynchronous. We need to make this change
because the first input channel determines the sampling rate of our entire module and if our first input channel were
synchronous and the second channel a vector, we could have synchronous vector channels which Dewesoft does not
support.

The first input channel's time base determines the rate at which ModuleModule::::calculatecalculate(()) gets called, unless we define any of
the output channels as synchronous, in which case it gets called at synchronous rate. This means that in case we have
multiple input channels they will all get resampled to the same timebase. We can optionally turn resampling off for each
individual input channel by unticking the checkbox inside input channel's setup form in Configure tab, in which case the
exact last value in the channel is used.

We make this change by pressing the Setup button of the Criteria channel and the setup form of the channel will open. We
then change the Time base of the Input channel to Asynchronous and Single Value and then change the Value type to
Vector.

33

In the Output channels tab we change the Value type of the Latch channel to vector and leave the vector size to the default
value, as we will override this setting in the code anyway (since it depends on the size of the input vector from Input
channel). Notice this setup also has one more field: Expected Async Rate. Don't worry about this yet, we will explain what
this is in the next section.

34

C++ Example II: Latch math - Changes in Code editor tab
Starting from the correctly "simplified" version of our code, we have to make just a few changes in the Code editor tab. We
will make changes in ModuleModule::::configureconfigure(()) and ModuleModule::::calculatecalculate(()) methods.

Updated void Module::configure()
We first add code to the ModuleModule::::configureconfigure(()) function. Because our output channel will now be a vector channel we have
to set the latchedChannelOut channel's axis to fit the vectors we want to output. In our case we are just copying the values
from input channel to output, so this vector will be of the same size as the vector in the input channel, meaning we can
simply copy the dimensions over. The name and unit of the output vector will also be the same as the name and unit of the
input channel so we can just copy these values as well.

inlineinline voidvoid Module Module::::configureconfigure(())
{{
 latchedChannelOut latchedChannelOut..expectedAsyncRate expectedAsyncRate == inputChannelIn inputChannelIn..expectedAsyncRateexpectedAsyncRate;;
 latchedChannelOut latchedChannelOut..axesaxes[[00]]..values values == inputChannelIn inputChannelIn..axesaxes[[00]]..valuesvalues;;
 latchedChannelOut latchedChannelOut..axesaxes[[00]]..name name == inputChannelIn inputChannelIn..axesaxes[[00]]..namename;;
 latchedChannelOut latchedChannelOut..axesaxes[[00]]..unit unit == inputChannelIn inputChannelIn..axesaxes[[00]]..unitunit;;

 pastSamplesRequiredForCalculation pastSamplesRequiredForCalculation == 11;;
}}

Since our output channel is an asynchronous output channel we also need to set one more thing: expectedAsyncRateexpectedAsyncRate.

Expected async rate per second
If our module contains asynchronous output channels, we have to set their expected rate per second. You can think of this
as "how many samples at most will I be adding to this channel per second". We can change the value of this setting in
ModuleModule::::configureconfigure(()) by modifying the channel's expectedAsyncRateexpectedAsyncRate. This setting is required because we need to help
Dewesoft figure out how much memory it needs to reserve for our channel. While we can calculate this value in any way we
want, it can be useful if we know the rate of our output channel is somehow going to be connected to the rate of some
other input channel, in which case we can simply set the outputChanneloutputChannel..expectedAsyncRateexpectedAsyncRate to
inputChannelinputChannel..expectedAsyncRateexpectedAsyncRate, which we did in our case as seen in the code above.

We can set expectedAsyncRateexpectedAsyncRate to a completely arbitrary value, but if the expectedAsyncRateexpectedAsyncRate is set too high Dewesoft
will reserve too much memory and if it is set too low we might lose some important data. We don't need to set
expectedAsyncRateexpectedAsyncRate to the exact value, but we need to specify it to within an order of magnitude.

Updated void Module::calculate()
In the ModuleModule::::calculatecalculate(()) function we have to change the getScalargetScalar(()) and addScalaraddScalar(()) calls to getVectorgetVector(()) and
addVectoraddVector(()) calls, and bscbsc::::ScalarScalar type of currInputChannelValuecurrInputChannelValue to bscbsc::::VectorVector. We can do this very easily by

35

clicking the Replace button and replacing "Scalar" with "Vector" where it is necessary, using the Find next and Replace
buttons.

The code in the ModuleModule::::calculatecalculate(()) function should now look like this:

36

inlineinline voidvoid Module Module::::calculatecalculate(())
{{
 bsc bsc::::Scalar prevCriteriaChannelValue Scalar prevCriteriaChannelValue == criteriaChannelIn criteriaChannelIn..getScalargetScalar((--11));;
 bsc bsc::::Scalar currCriteriaChannelValue Scalar currCriteriaChannelValue == criteriaChannelIn criteriaChannelIn..getScalargetScalar((00));;

 bool crossedRisingEdgeCriteria bool crossedRisingEdgeCriteria == prevCriteriaChannelValue prevCriteriaChannelValue <=<= published published..latchCriterialatchCriteria
 &&&& currCriteriaChannelValue currCriteriaChannelValue >=>= published published..latchCriterialatchCriteria;;

 bool crossedFallingEdgeCriteria bool crossedFallingEdgeCriteria == prevCriteriaChannelValue prevCriteriaChannelValue >=>= published published..latchCriterialatchCriteria
 &&&& currCriteriaChannelValue currCriteriaChannelValue <=<= published published..latchCriterialatchCriteria;;

 ifif ((((publishedpublished..edgeType edgeType ==== risingEdge risingEdge &&&& crossedRisingEdgeCriteria crossedRisingEdgeCriteria))
 |||| ((publishedpublished..edgeType edgeType ==== fallingEdge fallingEdge &&&& crossedFallingEdgeCriteria crossedFallingEdgeCriteria))))
 {{
 bsc bsc::::Vector currInputChannelValue Vector currInputChannelValue == inputChannelIn inputChannelIn..getVectorgetVector((00));;
 latchedChannelOut latchedChannelOut..addVectoraddVector((currInputChannelValuecurrInputChannelValue,, callInfo callInfo..endBlockTimeendBlockTime));;
 }}
}}

These simple changes are enough to allow our module to receive vector channels as input and to output a vector at the
latch criteria.

37

C++ Example II: Latch math - Changes in Published setup
tab
Because we made changes in the Conigure tab, the Input channels in the Published setup tab are unassigned.

But before we continue to notice that we still need one more thing to test our new C++ Script: we need an asynchronous
criteria channel. To create one we can just convert a synchronous channel we used in the previous example to an
asynchronous one. The simplest way to do this in Dewesoft is by using a Basic statistics module. Close the C++ Script setup
by clicking the Ok button at the bottom of the page and add a Basic statistic module to our setup by clicking the Add math
button and under the statistics section choose Basic statistics. Now we check the box before the sine(1) signal in the Input
window and check the RMS box in the Output channels. We set the Calculation type to Sample based and Block based with
Block size of 1 sample. We add the statistic to our setup by clicking the Ok button.

Our setup now looks like this:

38

We can now assign the Input channels in the C++ Script setup in the Published setup tab. We assign the "sine(1)/RMS
signal" to the Criteria channel and we assign the "AI 1/AmplFFT" signal to the Input channel then click Ok.

Now we can see results by going into Measurement mode in Dewesoft.

39

C++ Example II: Latch math - Output
In the image 33 we see the outputted vectors on a 3D graph. A new vector is outputted every time the sine(1)/RMS signal
passes the value 0,5. We can also output the vector in a 2D/3D table and see the values in the vector.

But if we now decide that the latch condition should occur on the falling edge instead, we can again just change the
variables in the Published setup of the C++ Script setup.

40

The output will now look like this:

41

42

C++ Example II: Latch math - Debug channel
To aid with the development of your C++ Script a special debug output channel (of type asynchronous string) is enabled by
default whenever you create a new script. With this debug channel you can use a special voidvoid outputDebugStringoutputDebugString((constconst
stdstd::::stringstring&& message message,, bsc bsc::::Time timestampTime timestamp)) function to output arbitrary string messages to it from
ModuleModule::::calculatecalculate(()). On top of this, the debug channel will also automatically contain any exceptions thrown from inside
your ModuleModule::::calculatecalculate(()) function.

To see these messages in measurement mode, add a Digital meter visual control to your display and bind the debug
channel to it. Note that since the debug channel is an asynchronous channel, you will need to properly specify the expected
async rate per second value either in channel's setup or by setting debugdebug..expectedAsyncRateexpectedAsyncRate to an appropriate value
in ModuleModule::::configureconfigure(()) in your C++ code.

Debug channel can easily catch all the C++ exceptions triggered from your ModuleModule::::calculatecalculate(()), but it cannot do much in
case of segmentation faults and other undefined behavior. There is no simple way of finding these from C++ Script as they
will usually crash Dewesoft.

An example of a message outputted by the debug channel can be seen below. It shows a warning we get if we forget to set
the pastSamplesRequiredForCalculationpastSamplesRequiredForCalculation in ModuleModule::::configureconfigure(()) method of our example and still want to access the
previous sample of the Criteria channel using criteriaChannelcriteriaChannel..getScalargetScalar((--11)) call.

When you are done developing your module, you can easily remove the debug channel by unticking the checkbox in
Configure's Extra tab.

43

44

How to Import/Export C++ bundle?
In this pro training we have created a pretty useful, general Math module. One thing we might want to do next is use our
latch module in other setups, possibly on other computers. The way to do this is by using C++ Script's bundle functionality,
which can bundle together all the settings along with the precompiled module, meaning we don't need to compile it again if
we just want to use it on a different machine.

Export the script by going to the Project tab of our setup and click on the Export bundle... button. A window will appear
asking you for the way in which you want to bundle the module:

Open source: bundle is exported with the source code included. When such a bundle is imported via the Import
bundle... button, the user will have access to all 4 tabs in C++ Script.
Freeware: bundle is exported without the source code. When such a bundle is imported via the Import bundle... button,
the user will only have access to the Published tab. Be careful, as there is no way to recover the source code from a
Freeware bundle.

45

Select whichever type you want and click Ok. A new window will open prompting you to choose a destination on the
computer where you want the bundle to be saved. After choosing the destination click Save and your bundle will be
recompiled to work with all the supported architectures and saved to your desired location with the ".cbu" extension.

Import the bundle on another computer or in a different setup by creating a new C++ Script and clicking the Import bundle...
button in the Project tab and locating the "*.cbu" file you want to load. Click Open and the bundle will be imported to your
current setup.

Stand-alone math
Exported ".cbu" bundles can be added to Dewesoft's bin\addons\bin\addons\ folder, just like regular plugins. Dewesoft is able to
recognize such bundles, and display them in the "Add math" menu, just like built-in Dewesoft math modules. Since bundles
contain all the precompiled binary files, the end-user doesn't need DSMinGW to use such modules.

46

In the image 40, we have exported our Latch math bundle into bin\addons\bin\addons\ folder. You can see that after restarting
Dewesoft, our module appears under the Custom C++ Scripts group, with the name we specified on the Project tab under
Project name and the description as provided in the first line of the Description field. We can now use our Latch math
module in any setup we want, and we only have access to the Published tab with other tabs hidden from the end-user.

47

In which ways is it possible to extend Dewesoft?
At this point you might have a pretty good grasp on how to use C++ Script. But C++ Script is just one of many ways of
extending Dewesoft to suit your needs, and it might be slightly confusing to try and figure out if it actually is the best
solution for your task. So in this section we briefly compare different approaches and list a couple of pros and cons which
can hopefully help you pick the right tool.

Just a quick reminder: Dewesoft is a big software. It is always worth trying to figure out if Dewesoft can already do
whatever you need out of the box, because if it can, you will waste very little of your time, and will have full support from
Dewesoft team if anything doesn't work as expected.

Extention Description

Formula

If you want to manipulate channels in a simple way, the Formula module is usually the best one to
start experimenting with. Because of its ease of use it can serve as a great starting point for quick
prototyping, and it is usually good enough for most typical problems (signal generation, simple
manipulation of data in channels, etc.).

C++ Script

During its development, we mainly envisioned C++ Script as a tool to create custom math modules
that you could export and use just like standard Dewesoft modules. C++ Script is probably a good
second step after your approach with Formula modules gets too complicated, too cluttered, or, in
the worst case, you cannot figure out how to solve the problem with them.

Plugins

If you want to develop anything other than math modules, or if you tried creating a module with C++
Script and it proved to not be fast or powerful enough, or if you want to create a completely custom
GUI for your module, Plugins are the right way to go. With Dewesoft Plugins you get access to entire
Dewesoft from your code, including direct access to buffers behind channels, making Plugins
incredibly fast compared to C++ Script.

Sequencer / DCOM

Sequencer and DCOM are slightly different than the other 3 approaches mentioned in this section.
Regardless, they serve a very useful purpose and deserve to be mentioned here: they are used to
automate a person clicking on different parts of the Dewesoft UI. The difference among them is that
with Sequencer you can create sequences by dragging and dropping graphical blocks (requiring
little to no experience with programming) while with DCOM you need to use a programming
language. Sequencer is easier to use, but you get much more control with DCOM.

Extention PROS CONS

Formula

- The most intuitive of all the approaches, very
simple to use.

- Integrated fully into Dewesoft meaning no set
up required to get running.

- Input channels are fixed in the formula, making
reusability a lot of work.

- While it supports combining arbitrarily many
input channels, it always produces just one output
channel.

- Poor support for non-scalar channels.

48

C++ script

- Dewesoft setups look much nicer as you
(usually) only need one C++ Script to solve a
problem that would require a bunch of Formula
modules

- Reusability and generality of your module: you
can hide the code from the end-user and only
expose the Published setup tab.

- It can work with an arbitrary amount of input
and output channels.

- Requires familiarity with at least basics of
programming in C++.

- Difficult to test and debug.

Plugins

- Much easier to write nice code with proper unit
tests.

- Full control over the creation of GUI, access to
Dewesoft internals, and blazing fast.

- It can be used to create custom export formats,
custom visual controls, add support for
additional acquisition devices, ...

- Made to work with Visual Studio, giving you
access to a great debugger, code completion,
and other static analysis tools.

- Requires Visual Studio.

- Much harder to learn to use than C++ Script.

Sequencer / DCOM

- It can be used to create an automated
sequence of events in Dewesoft.

- Creator of the sequence can hide the details
from the end-user, exposing only a simple user
interface to control Dewesoft.

/

49

Where to go from here?
A great way to learn anything new is to study examples. For this exact reason we created some C++ Script bundles for you,
which you can find on Dewesoft's webpage under Support > Downloads > Developers > C++ Script. Note that you have to be
logged in to access the C++ Script section. These bundles hopefully demonstrate how versatile the C++ Script is, and may
give you a better feel of how and when to use it for your own problems.

For a more in-depth description of the C++ Script you can also check out the C++ Script manual, available on the same
webpage as the example bundles. It contains yet another step-by-step example of creating a useful math module, as well
as descriptions of all the available structures and features of the C++ Script.

Support > Developers section of Dewesoft website is also a great place for seeking help and additional clarification both
from Dewesoft staff, as well as community in general.

50

https://download.dewesoft.com/list/2/190
https://developer.dewesoft.com/#/

	Table of Contents
	What is C++ Script?
	How to install the C++ Script?
	Older versions of Dewesoft (before X3 SP6)
	C++ Example: Latch math
	Signals for testing our module
	Sample rate
	C++ Example: Latch math - Create C++ script
	Published setup
	Project
	Configure
	Published variables
	C++ Example: Latch math - Input and Output channels
	Input channels
	Output channels
	C++ Example: Latch math - Code editor tab
	Code
	void Module::Start()
	void Module::calculate()
	C++ Example: Latch math - Published setup tab
	Example: Latch math - Output
	C++ Example: Latch math - Code simplification
	Another way we could approach this
	C++ Example II: Vector latch math
	Channel types
	Signals for testing our module
	Example II: Latch math - Changes in Configure tab
	C++ Example II: Latch math - Changes in Code editor tab
	Updated void Module::configure()
	Expected async rate per second
	Updated void Module::calculate()
	C++ Example II: Latch math - Changes in Published setup tab
	C++ Example II: Latch math - Output
	C++ Example II: Latch math - Debug channel
	How to Import/Export C++ bundle?
	Stand-alone math
	In which ways is it possible to extend Dewesoft?
	Where to go from here?

