/A DEWESoft

www.dewesoft.com - Copyright © 2000 - 2025 Dewesoft d.o.o0., all rights reserved.

DSRemote library

h1lD11l = WinDLL (™ \DX

dsconInstance = HANDLE()

doErrCheck(h11D11.dsconCreateInstanc nter(dsconInstance), 1),

charArray = create string buffer("1 ; 3 ".encode()]
doErrCheck(hllD1l.dsconConnect(dsconInstance, charArray), "d: 1

numChannels = ¢ size t()

doErrCheck(h11D11.dsconGetChannelCount (dsconInstance, byref(numChannels)), "d
print(numChannels.value)

labelsPtr = pointer({POINTER(cty c_char_p) * numChannels.value)())
localValue = c_size_t(numChannels.value)
h11D11.dsconEnumerateChannels(dsconInstance, labelsPtr, byref(localValue))
name = (c_char * 5@)()
ch_name = cast(name, c_«
unit = (c_ch ()
ch_unit ctypes.cast(name, c_«
ch_instances [1
@, numChannels.value):
name = (c_char * len(labelsPtr[@][0][1]1))()
ch_index = .cast(name, c char p)

Introduction to DSRemote library

Do you ever want to control DewesoftX but you found out that DCOM (short for Distributed Component Object Model) is
hard to understand and Dewesoft NET protocol even harder? With the help of C DLL (short for dynamic link library) named

DSRemote you will be able to control and get data from the DewesoftX as easy as never before.

How to install the DSRemote library

To install DSRemote you need to go to our page. Under the development section, you need to find DSRemote. Note that you
have to be logged in to access the developer section.

DEWESoft® Products Applications About us Careers Training

)

Contact us Distributors oftware regis o RMA service orum d Support portal Developer portal

O Searchfiles Y

DewesoftX Dewesoft Manuals & Plugins Drivers Developers Other
previous releases Brochures
B C++ Script
B C++Plugin

B Export Examples

% DSRemoteConnect Library

[l DSRemoteConnect Library 2,34 MB | 28.12.2021
Dewesoft Remote Connect Library version v1.1.0 & DSRemoteConnect.zip
The library is the simplest way of integrating Dewesoft with custom applications that require only

basic functionality. It provides functions for loading setup files, starting the measurement,

transmitting data, and writing to control channels.

Itincludes a 32- and a 64-bit dll with corresponding header files in C++ and an example written in

Python, C++ and in LabView.

Bm NannnfE Adamaatian Cunmanlan

After downloading, you will have a zip that contains examples written in python, C++ and in Labview. Version 1.1.0 or newer
is needed in case you want to use Dewesoft NET option.

Overview of DSRemote

DSRemote is a DLL written in the C programming language. This DLL can be used in any programming language as long as
it has support for C type DLLa€™s. The data gotten from the DewesoftX can be used in post-analysis software or can be
used to store data in databases. DSRemote can use two different protocols to communicate with DewesoftX. They are
called DCOM and Dewesoft NET protocol. DCOM is a proprietary Microsoft technology for communication between
software components. This technology is used in Dewesoft extensions and Sequencer as the backend for communication
with DewesoftX. Dewesoft NET protocol on the other hand consists of two network protocols. To control DewesoftX before
the measurement the Telnet protocol is used. After we switch to measurement DewesoftX starts to send us the data in
TCP/IP stream of data.

To use DSRemote there are some requirements.

- You need to use the DewesoftX version 2022.1 or higher.

- Ita€™s recommended that the last version of C++ redistributable be installed on the computer.
- In case you are using the Dewesoft NET protocol you need a license for it.

For better performance and when having distributed system, it is recommended to use the Dewesoft NET protocol even in
case you are reading data from the same computer (local connection).

Which functions does the DSRemote cover:

¢ Loading setup

¢ Getting basic properties from the channel (unit or name)
¢ Hiding or showing DewesoftX Ul

e Start/Stop measurement

¢ Reading data from the channels

e Writing values to control channels

Now we will take a look at how these functions are implemented in the DSRemote DLL. Before we can call functions from
the DLL you need to make an instance. To make this instance you need to call function.

int dsconCreatelnstance(DSXInstanceHandle* handle, int connectionType);

As the first parameter, you send a handle by the reference. This handle presents a connection to DewesoftX software. As
the second parameter you define what kind of connection you want to make to the DewesoftX software. For now, as stated
before we support two types of connection. DCOM and Dewesoft NET. In the DLL they are defined as

typedef enum {
DSX_CONNECTION_TYPE_DCOM = 0,
DSX_CONNECTION_TYPE_NET =1

+ DSX_CONNECTION_TYPE;

Where 0 presents DCOM connection and 1 NET connection. To make a NET connection we call the function like.

dsconCreatelnstance(dsconinstance, DSX_CONNECTION _TYPE_NET)

After calling this function we will get an instance that will be used to control DewesoftX. With acquired instances, we can
call other functions. Before we can fully control DewesoftX we first need to connect to it. To connect to DewesoftX we need
to call

int dsconConnect(DSXInstanceHandle handle, char* connectionString)

Where the first parameter will be an instance that we got from the dsconCreatelnstance and the second parameter is the
string that gives us the information about the connection. In case we will use DCOM protocol this parameter can be empty.
For the Dewesoft NET protocol, this parameter consists of information delimited with a colon. This information presents
the address that we will connect over the ethernet. For example, if we want to connect to a computer with IP 10.2.10.254
that uses for Telnet communication port 8999 and for data transmission port 8001 then we define a string as

8€0210.2.10.254:8999:8001a€

About these settings, you can read more about them in the pro tutorial for Dewesoft NET or our manual.

After we are connected to DewesoftX we are ready to do things.

https://training.dewesoft.com/online/course/network-and-distributed-acquisition-using-dewesoft-net
https://manual.dewesoft.com/x/measure/netacq

Example - reading and writing data over NET

Now let's take a look at an example

from ctypes import *

import ctypes from ctypes.wintypes import *
import time

import numpy as np

def doErrCheck(err_code, descr):
if err_code < 0:
print(str(descr) + " errCode: " + str(err_code))
return err_code

hlIDIl = WinDLL
("C:\\DXEProjects\\Tools\\DSRemoteConnect\\DSRemoteConnect\\Debug\\DSRemoteConnect64.dll")
dsconlnstance = HANDLE()

doErrCheck(hlIDIl.dsconCreatelnstance(pointer(dsconinstance), 1), "dsconCreatelnstance")
charArray = create_string_buffer("10.2.120.255:8999:8001".encode())
doErrCheck(hlIDIl.dsconConnect(dsconinstance, charArray), "dsconConnect")

numChannels = c_size t()

doErrCheck(hlIDIl.dsconGetChannelCount(dsconlnstance, byref(numChannels)),
"dsconGetChannelCount")

print(numChannels.value)

Second way of enumerating Channels

labelsPtr = pointer((POINTER(ctypes.c_char_p) * numChannels.value)()) localValue =
c size _t(humChannels.value)

hlIDIl.dsconEnumerateChannels(dsconlnstance, labelsPtr, byref(localValue))

name = (c_char * 50)()

ch_name = ctypes.cast(name, c_char_p)

unit = (c_char * 50)()

ch_unit = ctypes.cast(name, c_char_p)

ch_instances =[]

foriin range(0, numChannels.value):
name = (c_char * len(labelsPtr[01[01[il))()
ch_index = ctypes.cast(name, c_char_p)
ch_index.value = labelsPtr[0][0][i]
ch_instance = HANDLE()
hlIDIl.dsconCreateChannellnstance(dsconlnstance, ch_index, pointer(ch_instance))
ch_instances.append(ch_instance)
hlIDIll.dsconChannelGetName(ch_instanceslil, ch_name, 50)
print(ch_name.value)
hlIDIl.dsconGetChUnit(ch_instancesli], ch_unit, 50)
print(ch_unit.value)

doErrCheck(hlIDIl.dsconChannelSetTransferred(ch_instances[len(ch_instances) - 1], False),
‘dsconChannelSetTransferred')

doErrCheck(hlIDIl.dsconStartMeasurement(dsconlnstance), "dsconStartMeasurement")
data2 = ctypes.cast((c_double * 100000)(), POINTER(c_double))

time_stamps2 = ctypes.cast((c_double * 100000)(), POINTER(c_double))

count =0

while True:
try:
countData2 = c_size t(100000)
foriin range(len(ch_instances)):
doErrCheck(hlIDll.dsconChannelReadScalarData_2(ch_instances|i], data2, time_stamps2,
byref(countData2)), "dsconChannelReadScalarData_2"
AAAA
A A A A doErrCheck(hlIDIl.dsconControlChannelWriteData(ch_instances[1], c_double(0.69 + count)), "dscon(
doErrCheck(hlIDIl.dsconControlChannelWriteData(ch_instances[2], c_double(0.70 + count)), "dsconContrc
doErrCheck(hlIDIl.dsconControlChannelWriteData(ch_instances[3], c_double(0.71 + count)), "dsconContrc
count +=1
except:
print("While interrupted")
break

print("Finally")
doErrCheck(hlIDIl.dsconStopMeasurement(dsconinstance), "dsconStopMeasurement")
doErrCheck(hlIDIl.dsconDisconnect(dsconlnstance), "") # this will close Dewesoft.exe and clear the DCOM
foriin range(0, numChannels.value - 1):

doErrCheck(hlIDIl.dsconFreeChannellnstance(ch_instances|il), "dsconFreeChannellnstance") # this will
free chnl instances of dll
doErrCheck(hlIDIl.dsconDestroylnstance(dsconlnstance), "dsconDestroylnstance") # this will free dll

instance

1

The example is written in python. This example uses Dewesoft Net as protocol and firstly outputs the channels that are
present in the setup and outputs their name and unit. After listing information, we go into measure mode and read the data.
After the data is read, we write some values to control the channel. Now leta€™s look at the code by sections.

In the following section, we are listing the channels and outputting the channel name and unit.

numChannels = c_size t()
doErrCheck(hlIDIl.dsconGetChannelCount(dsconlnstance, byref(numChannels)),
"dsconGetChannelCount")
print(numChannels.value)

Second way of enumerating Channel

labelsPtr = pointer((POINTER(ctypes.c_char_p) * numChannels.value)())
localValue = c_size_t(numChannels.value)
hlIDIl.dsconEnumerateChannels(dsconinstance, labelsPtr, byref(localValue))
name = (c_char * 50)()

ch_name = ctypes.cast(name, c_char p)

unit = (c_char * 50)()

ch_unit = ctypes.cast(hname, c_char_p)

ch_instances =[]

foriin range(0, numChannels.value):
name = (c_char * len(labelsPtr[01[01[il))()
ch_index = ctypes.cast(name, c_char_p)
ch_index.value = labelsPtr[0][0][i]
ch_instance = HANDLE()
hlIDIl.dsconCreateChannellnstance(dsconlnstance, ch_index, pointer(ch_instance))
ch_instances.append(ch_instance)
hlIDIll.dsconChannelGetName(ch_instanceslil, ch_name, 50)
print(ch_name.value)
hlIDIl.dsconGetChUnit(ch_instancesli], ch_unit, 50)
print(ch_unit.value)
print(ch_unit.value)

Before we can loop over all the channels we need to find out how many channels are there. To get this information we need
to call the function

int dsconGetChannelCount(DSXInstanceHandle handle, size t* count);

As the first parameter, we pass the instance that we described in the section. As the second parameter, we by reference
pass the value. After calling this function, the number of channels that are present in the DewesoftX will be stored in this
variable. Before we can access the properties we need to get the unique ID that presents a channel. To get the unique

IDa€™s we call the function.

int dsconEnumerateChannels(DSXInstanceHandle handle, ChannelldList* channelldList, size t* count);

This will return values by reference. The second parameter will return an array of strings, each element representing unique
ID for each DewesoftX channel. The last parameter returns how many channels are there present in the array. Unique IDs
are used to create DewesoftX channel instances. To create a channel instance we call function.

int dsconCreateChannellnstance(DSXInstanceHandle handle, ChannellD id, ChannellnstanceHandle*
chinstance);

The channel instance is returned as the third parameter by reference. With the acquired channel instance we can get info

8

https://training.dewesoft.com/online/page/overview-of-dsremote

about channel name and channel unit. To get the channel name we call the function

int dsconChannelGetName(ChannellnstanceHandle channel, char* name, size t len);

and to get the channel unit we call the function

int dsconGetChUnit(ChannelinstanceHandle handle, char* resultUnit, size_t len);

After each call, we print it to standard output.

In the next section, we will take a look at how to read and write the data to channels. Let's take a look at the section.

doErrCheck(hlIDIl.dsconStartMeasurement(dsconinstance), "dsconStartMeasurement")
data2 = ctypes.cast((c_double * 100000)(), POINTER(c_double))
time_stamps2 = ctypes.cast((c_double * 100000)(), POINTER(c_double))

count =0
while True:
try:

countData2 = c_size t(100000)
foriin range(len(ch_instances))):
doErrCheck(hlIDIl.dsconChannelReadScalarData_2(ch_instances[i], data2, time_stamps2,
byref(countData2)), "dsconChannelReadScalarData_2")

doErrCheck(hlIDIl.dsconControlChannelWriteData(ch_instances[1], c_double(0.69 + count)),
"dsconControlChannelWriteValuel")

doErrCheck(hlIDIl.dsconControlChannelWriteData(ch_instances[2], c_double(0.70 + count)),
"dsconControlChannelWriteValue2")

doErrCheck(hlIDIl.dsconControlChannelWriteData(ch_instances[3], c_double(0.71 + count)),
"dsconControlChannelWriteValue3")

count +=1

except:
print("While interrupted")
break

print("Finally")
doErrCheck(hlIDIl.dsconStopMeasurement(dsconinstance), "dsconStopMeasurement")
doErrCheck(hlIDIl.dsconDisconnect(dsconlnstance), "") # this will close Dewesoft.exe and clear the DC
foriin range(0, numChannels.value - 1)

doErrCheck(hlIDIl.dsconFreeChannelinstance(ch_instances|il), "dsconFreeChannellnstance") # this will
free chnl instances of dewesoft
doErrCheck(hlIDIl.dsconDestroylnstance(dsconlnstance), "dsconDestroylnstance") # this will free dll
instance

Before we can start reading or writing the data we first need to go to the measure. To switch to measure mode we need to
call the function

int dsconStartMeasurement(DSXInstanceHandle handle);

After this call, we can read and write the data to channels. This library supports reading the data from any channel but only
supports writing to control channels. To know if the channel is the control you need to call the function.

int dsconlsChannelControl(ChannellnstanceHandle handle, bool* result);

Before we can read the data we need to allocate a local buffer. The samples from the channels will be added to this buffer.
If you take a look at python we see in the following code

data2 = ctypes.cast((c_double * 100000)(), POINTER(c_double))
time_stamps2 = ctypes.cast((c_double * 100000)(), POINTER(c_double)

That we are preallocating local buffer for data and timestamps. The size is 100000 double values. The size of the local
buffer depends on how many values from DewesoftX values will be copied. In case the preallocated buffer is too small,
samples in DewesofX will be lost, because they will be overwritten. The following function:

int dsconChannelReadScalarData_2(ChannellnstanceHandle handle, double* data, double* timestamps,
size t * count);

accepts several parameters. The first one accepts a channel instance which represents the channel from which we will
read the data. The second and third parameters accept preallocated buffer as the fourth parameter the function accepts
the size of the buffer. In case the number of samples available is lower than the size of the buffer it will change is
accordingly to the number of added samples.

As pointed before we have also added a function to write to control channels. Function for writing values to control
channels looks like this:

int dsconControlChannelWriteData(ChannellnstanceHandle handle, double data);

Same as in dsconChannelReadScalarData the first parameter represents the channel instance that is connected to the
DewesoftX channel. The second parameter presents the value that we want to write to the control channel.

After we are done with the measurement we call the function:

int dsconStopMeasurement(DSXInstanceHandle handle);

After we are done with measurement and want to stop the program, we need to disconnect from the DewesoftX. To do this
we call the function:

int dsconDisconnect(DSXInstanceHandle handle);

10

After we are disconnected, we also want the software to be closed correctly. The software will be closed correctly if we free
all the instances we made during our software. To do this we have these functions:

int dsconFreeEnumerateChannels(DSXInstanceHandle handle, ChannelldList* channelldList)
int dsconFreeChannellnstance(ChannellnstanceHandle chinstance)
int dsconDestroylnstance(DSXInstanceHandle handle);

With dsconFreeEnumerateChannels we clean the array of strings that we made during the call of function
dsconEnumerateChannels. With the function dsconFreeChannellnstance, you clean the channel instances that were made
with the function dsconCreateChannellnstance. After all other instances are freed, we call the last function
dsconDestroylnstance.

11

	Table of Contents
	Introduction to DSRemote library
	How to install the DSRemote library
	Overview of DSRemote
	Example - reading and writing data over NET

