Virtual 3D Polygon for ADAS and Vehicle Dynamics Testing
Introduction to the Polygon

Polygon is a platform for tests involving moving objects. It was made especially for vehicle dynamic testing and advanced driver assistance systems - ADAS, which increases safety in the traffic. Polygon provides a visual representation of measurements in the three-dimensional virtual space. It also provides easy tools for geometric measurements between multiple static or movable objects. Polygon visualization and outputs can be calculated during the measurements or after in offline mode. Due to its flexibility it's not only used in Automotive, but also Marine, Heavy machinery, ...

[Video available in the online version]

[Video available in the online version]
How to install the Polygon plugin?

Polygon works as a Dewesoft X plugin. To install it, please copy Polygon.dll to the Addons folder of Dewesoft X Software. Then open the Dewesoft X software, go to Settings -> Extensions and click on the plus button. This will open an extension manager. The Polygon plugin should appear in the extension manager list, where you have to enable it to make it work. If the plugin is successfully enabled it will appear in the extension list. If you don’t find the plugin in the extension manager click to refresh the list in the extension settings.

Image 2: Open Settings -> Extensions -> click Plus button -> type in Polygon and enable the Polygon plugin
Optional plugin: Vehicle Simulation

If you want to test Polygon setups before use or want to learn how to use the Polygon plugin offline, there is an additional Vehicle Simulation plugin available - VehicleSimulation.dll library. The installation process is the same as with the Polygon plugin. Vehicle simulation plugin automatically adds longitude, latitude, and heading channels that can be used to move vehicles in the Polygon environment. The added channels can be controlled with keyboard arrows or with joystick movement.
How to setup the Polygon?

Under **channel setup** click on the **Polygon** button in the main toolbar. Polygon setup contains **four sections**:

- On the **left top is the object list with all of the objects** (vehicles, cones, gates, lines…)! needed for measurement and their **basic properties like name, color, show/hide option**.
- Under that is the **object property section** with detailed properties for selected object. Some properties like moving characteristics are similar for all objects and others are object type dependent, like dimensions for vehicle, position for cones, width for lines and routes.
- On the **bottom left is the output list**, where all the polygon outputs like distances, angles, gate cross triggers… can be defined. **Outputs automatically become new data channels**.
- On the **right side of the display there is a polygon 3D preview** with view angle settings.

To see the polygon on the measure screen just put Polygon3D component on it and connect it to the Polygon visual group. If there is just one visual group suitable for Polygon3D visual component then it will be automatically assigned.

![Image 5: Polygon setup view](image-url)
Which Objects can be used?

Polygon offers six different types of objects. Each of them has specific properties, behavior, and calculation options:

- Vehicle
- Simple object
- Line
- Route
- Circle
- Travel radius

Settings which define how object moves are common for all objects. It’s normal for a vehicle to move and for a route to be fixed, but there can be exceptions so any object can be fixed or moving. There are actually three options. Object can be Moving, Fixed, or defined as Moving with:

- **Fixed object** is fixed to the ground and X and Y are relative positions regarding the origin (they represent the coordinates in the fixed coordinate system).
- **Moving objects** needs Latitude, Longitude, and Heading channels to be assigned to them. In this case X and Y coordinates define shift from the Latitude, Longitude, and Heading value (they represent coordinates in the moving coordinate system).
- Third option *Moving with* is similar to Moving, but here some other moving object is set as the reference instead of Latitude, Longitude and Heading channel.

There is also an option **Freeze on trigger**, which can be defined for the ‘Moving’ or ‘Moving with’ type of objects. When the value of a trigger channel reaches the specified condition the object will stay on its place and further changes of Latitude, Longitude, and Heading from the master object won’t change its position. If an object moves with another object it will also freeze when the master object freezes.
In the following section objects Vehicle, Simple object, and Line will be described.

Vehicle

The vehicle is usually the first object we need. It’s normally a moving object, with Latitude, Longitude, and Heading channels from GPS, DS-IMU, ADMA, or some other device. Length and Width should also be defined if we want to calculate distances from the edges of the vehicle. There are also X and Y coordinates which represent the shift of the vehicle center from the point given by Latitude and Longitude (usually GPS antenna position). If the antenna is at the back then X should be positive (vehicle shifted forward), if it is on the left Y should be positive (vehicle shifted right).

- **Fixed**
- **Moving**
 - Lat: Latitude
 - Long: Longitude
 - Head: Heading
- **Moving with**
- **Freeze on trigger**

<table>
<thead>
<tr>
<th>X [m]</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y [m]</td>
<td>0.2</td>
</tr>
<tr>
<td>Length [m]</td>
<td>1.7</td>
</tr>
<tr>
<td>Width [m]</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Image 8: Vehicle property settings

[Image 9: Specifying offsets from a GNSS antenna to the vehicle center]

Settings for vehicle size can be moved out of the setup and out of the setup file. This can be used in cases when the same setup is used with different vehicles or when those settings should be set in the Data header (on start when Sequencer opens it for example). If there is entry with Unique IDVehicleLength and VehicleWidth in Data header then it will be fixed to those two values and disabled in setup (will be still shown, but disabled).

Simple object
A simple object is a **single point in the polygon**, visually represented with a traffic cone. It’s **normally a fixed object, but can also be moving**. If it is fixed then X and Y determine the position on the fixed coordinate system, if it is moving then X and Y determine its position in the moving coordinate system. So the Simple object can be cone in Lane change test, microphone in Pass-by noise test, but it can also represent any custom interest point inside or outside of the vehicle (or other moving objects), which we can use to calculate distances to.

![Simple object definition](image)

Line

Line is **defined with two points**. It’s also **normally fixed object, but can also be moving**. The order of points is important, **line direction is defined as a direction from first to the second point**. Depending on the side on which the measured object lays the calculated distance is either positive or negative. If it is on the right then distance will be positive and if it is on the left then it will be negative. **The width is also important**. Not just for visualization, but also for **distance calculation if the distance from the edge is calculated**. Line can for example represent the straight lane in Lane departure test or Lane change test, but it also has one additional function. It can also act as a crossing trigger (more about that in the output section).
Objects: Route, Circle and Travel radius

In the following section the other three objects will be described: the [Video available in the online version]
How to determine the Coordinate Systems and Origin?

Coordinate Systems

[Video available in the online version]

- SETUP WITH TWO POINTS

GNSS position from one movable antenna is needed, data has to be connected to a vehicle type object in the polygon environment. For the origin definition two reference points on the test area have to be chosen. Reference points should be as far apart as it is feasible on the test site. This reference points have to be added on the modeled test track in polygon as simple objects (you can also choose existing cones as reference points). Vehicle object with GNSS data connected to it has to be chosen as the object with which the origin is going to be set. To set point 1 we move the GNSS antenna on the position of the first reference point on our test area and press the button ‘Set point 1’. The same has to be done to set up the point 2.

[Video available in the online version]

- ORIGIN SETUP WITH IMPORTED ROUTE

Origin can also be set with a route imported in the polygon environment. If prior to import origin hasn’t been set the route import will automatically set it. The origin zero point is going to be located in the route start point with the origin direction (X-axis of the fixed coordinate system) pointed in the route start direction. Origin position can always be reset and redefined.
What the Accurate Origin is important for?
What the Accurate Origin is important for?

Origin has to be defined accurately to ensure that objects positions in the polygon environment correspond to the position on the real-world test track. Two mistakes can be made during origin setup: wrong definition of origin zero point or wrong definition of origin orientation.

Wrong definition of origin zero point can happen when we position the GNSS antenna is in the wrong position on the test track that doesn’t match the position of our modeled environment. Errors from this mistake are constant throughout the test area (constant offsets between objects on the real test site and objects modeled in polygon). These errors can be noticed with a comparison of the GNSS antenna position on the real test track compared to the position of it (object connected to it) in the polygon environment.

Error in origin orientation is made when GNSS heading isn’t aligned with the X-axis orientation of the real test site (origin set up with current position and heading), or with positioning error in the two-point definition. Positional errors increase with the distance from the origin, small errors in orientation definition can produce large positional errors away from the origin. Therefore it is recommended to use a two-point origin definition when positional accuracy of the test area is needed (examples: slalom, lane change, pass-by noise).

<table>
<thead>
<tr>
<th>Heading angle error</th>
<th>100 m</th>
<th>200 m</th>
<th>300 m</th>
<th>500 m</th>
<th>800 m</th>
<th>1000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1°</td>
<td>0.17</td>
<td>0.34</td>
<td>0.51</td>
<td>0.85</td>
<td>1.36</td>
<td>1.70</td>
</tr>
<tr>
<td>0.2°</td>
<td>0.35</td>
<td>0.70</td>
<td>1.05</td>
<td>1.75</td>
<td>2.80</td>
<td>3.50</td>
</tr>
<tr>
<td>0.5°</td>
<td>0.87</td>
<td>1.74</td>
<td>2.61</td>
<td>4.35</td>
<td>6.96</td>
<td>8.70</td>
</tr>
<tr>
<td>1°</td>
<td>1.75</td>
<td>3.50</td>
<td>5.25</td>
<td>8.75</td>
<td>14.00</td>
<td>17.50</td>
</tr>
</tbody>
</table>

Image 16: Positional error in Y direction caused by heading error
Which Outputs Channel can be created?

Polygon outputs are defined in the output table each specified output becomes a new data channel in the measurement.

[Video available in the online version]
Which Output Types can be defined?

There are seven types of outputs (distance, distance X, distance Y, angle, and gate cross trigger). Each has its own add button in the output table.

- **Distance** gives a distance between two objects. They can both be moving or one can be fixed. All types of objects are supported for distance calculation, but there are few rules which were already explained about which object should be first, meaning of positive negative result and so on.

- **X and Y distance** calculate longitudinal and lateral distance looking from the first object. They can be calculated between vehicles and simple objects (fixed or moving). If X and Y position of some object on the fixed coordinate system is required then first put a simple object in the center (fixed object at position x=0, y=0) and then calculate X and Y distance from that center object to the moving object.

- **Angle** calculates the heading deviation between two objects. It can be calculated between two vehicles or Line, Route, Circle or Travel radius, and Vehicle (vehicle should always be the second object). Like already mentioned in general clockwise is positive, but with circular objects heading vector pointing outwards is positive and inwards is negative.

- **Gate cross trigger** changes its value from zero to one and back to zero again when moving object crosses the line. The first object must always be a line (representing the gate) and the second object must be a vehicle or a simple object (custom interest point).

- **Time** outputs relative time from the previous time reset in seconds and resets the timer. One of the objects in the measurement has to be a line. Output is changed when the other specified object (vehicle, simple object) crosses the line center. One line with time setting can be used to record lap times on a looped track.

- **Time reset** resets the relative timer and outputs the absolute time from the start of measurement in seconds. One of the objects in the measurement has to be a line. Output is changed when the other specified object (vehicle, simple object) crosses the line center. Normally this setting is used on start lines of non-looped tracks (acceleration runs, brake tests).

- **Radius** outputs the specified travel radius value in meters. It uses only the specified travel radius for the object of measurement. It can be set to output either radius or inverse radius. An inverse radius is used when we want to avoid the large values of the radius when the moving object path comes close to a straight line.
How to 3D Visualize everything?

Visual settings are the same in setup and measure module but they don’t influence each other. **Visualization settings do not influence the measurement.**

Camera position

Manual means that the view angle can be adjusted to any position manually. It can be translated with the right mouse button, rotated with the left mouse button and zoomed in and out with the mouse wheel or pressing both mouse buttons and moving the mouse up and down.

Attach to car view can also be set with the mouse (move, rotate, zoom). Similar to manual but with one big difference that camera will move with the vehicle (first vehicle on the list if there are more than one). The camera will move with the vehicle but will not rotate with it.

Follow car view can also be set with the mouse (move up and down and zoom). In this case the view will follow the car and also rotate with the car. By default the camera will be at the back of the car following it like in driving simulation games. It’s suitable for driving assistance when following virtual routes.

Vehicle presentation

Vehicle can be visualized with a 3D model (Vehicle) or as an exact size rectangle on the ground (Exact sized box).

![Image 20: Visualization in the measurement mode](image-url)
Example I: Brake test

Polygon can be used to measure lateral and heading deviations on braking. Braking lane has to be defined (polygon line or route). If tests are repeated on the same test lane braking lane should be fixed. If we are testing in an open area without the real brake lane defined we can choose a moving brake lane that is set up to freeze on trigger (brake pedal actuation, threshold deceleration). For brake tests in a curve a travel radius which freezes on the trigger can be used.

Brake test polygon setup consists of two objects, vehicle and its travel radius. The travel radius is set to freeze on the trigger. Event count of brake test math is used for lane freeze. When the brake test starts its Event count goes to 2, travel radius freezes. Two polygon outputs calculate lateral deviation (distance from lane center to vehicle center) and heading deviation (angle between lane direction and vehicle heading).
Example II: Lane departure

We need two objects for lane departure test, lane, and vehicle. Lane can be a simple line, circle, or more complex route (like this S in the example). Lane will be a fixed object placed to the ground with origin set. When this is done few outputs need to be defined. Distances from route center to vehicle center, route edges to car outer corner points, vehicle heading deviation from route.

![Image 23: Lane change test](image)

The XY recorder on the screen shows the distances from route edges to vehicle corner edges over the route distance. [Video available in the online version](Lane Departure Test Data File Recording)
Example III: Lane change

Lane change test consists of three lanes: enter, leave, and shifted lane. They can be represented with lines precisely positioned in the polygon. In reality cones would be placed on the test surface to mark lanes, but they do not need to be implemented in polygon. Lane edges can do their job.

For average speed calculation we also need start and finish gate. In polygon terminology this would be two lines and two Gate Cross outputs, which can then be used as start and stop trigger in statistics to calculate average speed. The calculation can also be triggered with car X and Y position.

[Video available in the online version]

[Video available in the online version]
Example IV: Functional Safety

There are many types of functional safety (FuSi) tests. Straight line and steady-state cornering tests are simpler, but there are also tests with more complex predefined maneuvers like the Dog-track test. For straight line and steady-state cornering tests we just need a vehicle and its travel radius. Travel radius will represent the predicted vehicle path in normal conditions (without error injected). Due to the steady nature of simpler tests the predicted path from the travel radius is going to be fairly accurate. At the moment when an error is injected in the car electronic control system the predicted vehicle path (travel radius) is frozen. Vehicle lateral and angle deviations are then calculated using the frozen travel radius as a reference.

If a predefined maneuver has to be driven before the error is injected the route of the maneuver can be predefined (manual route creation, route recording, and import). Route can be either positioned fixed on the polygon (in setup) or moving with a vehicle with a freeze on trigger function. Freeze can be triggered with a button, speed threshold. The polygon view can from then on be used as driver assistance. From here on the procedures and analysis is the same as with the simpler tests.

Image 26: The FuSi setup - a route with a predefined maneuver that freezes when vehicle velocity reaches 50 km/h

Image 27: Measurement view for FuSi setup
Example V: IIHS Headlight Testing

[Video available in the online version]