

www.dewesoft.com - Copyright © 2000 - 2025 Dewesoft d.o.o., all rights reserved.

TEDS Sensors (IEEE 1451.4) and Sensor Database

What is TEDS?

Did you ever make the wrong measurements due to wrong sensor scaling?

No?

Then you probably don't have many years of experience. Every experienced measurement engineer we know just smiles - a bit bitter though - when you ask him such question :)

There are several ways how the measurements can be messed up. Wrong sample rate, wrong amplifier range, sensor wiring are common errors. But when talking to the customers, entering wrong sensor scaling is one of the most common errors.

The idea of the Transducer Electronic Data Sheet (TEDS) is to eliminate this issue by equipping each sensor with a small chip that has the information about the sensor itself as well as how amplifiers must be set.

TEDS formats are defined in the *IEEE 1451 standard*. A lot of sensor manufacturers implemented this standard in their sensors, so you can buy already a sensor with this chip, connect it and everything is set.

TEDS capability was originally intended for piezoelectric sensors such as accelerometers and pressure sensors, but it now includes all common analog sensors and actuators, such as MEMS (micro-electromechanical sensors), accelerometers, load cells, voltage output sensors and others.

You don't have to go through the setup and configuration steps because all the information is already saved in the chip - type of device, manufacturer, model number, serial number, calibration date, sensitivity, reference frequency, amplifier setup. The TEDS also stores the calibration coefficients and frequency response for a transducer in terms of a table or an algorithm.

So it's a simple plug&play operation - once the sensor is connected, everything is already set.

How TEDS is used in Dewesoft?

There are two ways how to use TEDS sensors in **Dewesoft X**.

A lot of manufacturers already offer a TEDS enabled sensor. In this case we simply connect the sensor in case of high voltage output to the instrument.

NOTE: If we have sensors in IEPE mode, we must choose IEPE mode before <u>Dewesoft X</u> will search for the TEDS sensor.

When the sensor is read in, we can see the serial number, settings of the amplifier, and sensitivity of the sensor.

Image 2: Read in sensor and informations in Edit sensor section

In our case we have connected an accelerometer with a physical quantity of m/s2. Since <u>Dewesoft X</u> implements a system of measurement units, we can easily change from m/s2 to g simply by selecting it from the drop-down menu.

Image 3: Changing the unit in General settings of the TEDS sensor

In the Edit sensor we see the additional information like Manufacturer, sensor type. Since this is the off-the-shelf sensor, <u>Dewesoft X</u> doesn't offer us to write anything to the sensor.

Image 4: TEDS sensor information

If we have to change something on standard sensors, we have to use the DeweTedsEditor (downloadable from our web page). Using this tool we can also perform calibration of the standard sensors.

How to connect the TEDS chip?

If our sensor doesn't not have the TEDS chip built-in, we can easily create one. TEDS chips can be bought almost anywhere (ok, excluding local grocery stores) and it costs only several dollars.

First we need to modify our sensor and add a TEDS chip. Usually this is done in the connector. In this example we use the DS24B33 chip from Maxim, which is also recommended because it is large enough to also store all the amplifier settings.

In this picture below, we can see the connection for a <u>SIRIUS</u> STG module (with 9 pin DSUB).

IMPORTANT: Wrong polarity can destroy TEDS chip! And with the TO-92 chip casing, it is easy to turn the chip around, so be careful.

How to enable TEDS interface in Dewesoft X?

Before we start reading TEDS, we check if TEDS detection is enabled in <u>Dewesoft X</u> (it is usually done by default, but if sensors are not detected, this is the first thing to check).

Start <u>Dewesoft X</u> and go to Settings in upper right corner of the screen and activate the checkbox "Enable MSI adapters, TEDS sensors".

🔺 Settings				— 🗆 X
Q	DEVICES			
Devices	Operation mode	F	Real measurement	~
Extensions	⊕	⊗ Synchronization		
Global variables	✓ ▲ Local system	Time source	Dewesoft DAQ Devices	~
Data header	✓ ·▲ Dewesoft Devices	Dewesoft DAQ Devices Clock provider Standalone	Automatic	~ 📀
U Startup		⊗ Settings		
Performance		Channel setup sample rate	20000	s/s/ch
User interface		Enable DSI adapters, TEDS sen	ISOFS	Ø
Files and folders		⊘ Dewesoft NET		
E Storing		Allow remote connections to this	is system	0
Reports		Store data on slave clients		\otimes
Security				
(Update				
Advanced				
Licensing				
				OK Cancel

Image 6: Enable MSI adapters, TEDS sensors

How to read TEDS?

When the *empty TEDS* chip is connected, there will be *no reaction*. But you can check, if the TEDS chip is working by *entering the* Channel Setup.

The button "Write to TEDS" and an additional tab "Teds" will be visible.

Image 7: TEDS recognition icon

How to write TEDS?

In this example we have a quarter bridge strain gage sensor connected to the input. We can set up the bridge mode, excitation voltage, zero the channels, enter the physical measurement, sensor sensitivity, and so on, similar like you would set up any sensor in <u>Dewesoft X</u>.

NOTE: <u>Dewesoft X</u> doesn't allow to write to TEDS if it was created by Manufacturer other than Dewesoft (we can use TEDS editor for that).

Now go to the Edit sensor tab, enter the sensor data (Serial number, Model, manufacturer, calibration data), and then press the "Write to TEDS" button, when you have done all the settings.

General Edit sensor	TEDS
Serial number	112255
Model	
Manufacturer	Dewesoft ~
Calibration date	22/05/2019
Calibration period	730 Cal initials
Show advanced ser	nsor settings
Save sensor	Write to TEDS
	Not standard TEDS

Image 8: Unlock the TEDS sensor editor, enter the sensor data and write information to TEDS

Now all the settings are stored to the chip and therefore locked.

When we were analyzing the standard TEDS templates, we got the feeling that the standard is just halfway done. It describes the sensors well, but it doesn't describe how the amplifiers should be set so that the sensors are working correctly. The major advantage of Dewesoft TEDS is, that apart from the sensor, *also all the amplifier settings* (like range, type of input, filter, EXC voltage...) *are stored*.

Also other vendors are trying to do this, but they usually create their own templates that don't comply with the standard. We are using the fact that *multiple templates can be written to the single chip*. Dewesoft is writing the standard template FIRST, so this can be read with any other data acquisition device supporting TEDS and on top of that other Dewesoft specific templates are written to fully set the amplifier.

In the TEDS section we can see these multiple templates.

Image 9: Multiple templates in TEDS section

If you want to edit the sensor, just click the lock symbol on the right upper corner to unlock.

Starting with <u>Dewesoft X</u> we can also define *additional information* for the sensor including password to prevent rewriting the sensors by users.

Advanced write options 3.	×	
Lock all channel settings		Decimals Sample rate 6 Auto 100000 <
Unchecked properties will not be written to sensor		
Allow user to define offset		
Actual amplifier range	Lock	General Edit sensor TEDS
Actual amplifier LP-filter	Lock	Serial number 112255
Sensor max. limit	Lock	
Sensor min. limit	Lock	Model
Sensor excitation max	Lock	Manufacturer Dewesoft ~
Sensor excitation min	Lock	Calibration date 22/05/2019 ■▼
Actual channel name	🗹 Lock	
Actual channel description	Lock	Calibration period 730 Cal initials
Sample rate	Lock	
Channel used	✓ Lock	Show advanced sensor settings 1.
Channel stored	🗹 Lock	Save sensor Write to TEDS Not standard TEDS
✓ Channel group Group4 ∨	🗹 Lock	2. Not standard TEDS
Channel decimal places	Lock	nction
Actual channel color	Lock	int Second point
Channel warning low	Lock	
Channel warning high	Lock	mV/V 10 mV/V
Channel critical low	Lock	equals
Channel critical high	Lock	К 0,01 К
Channel hysteresis	Lock	Calibrate
		from average
		from AC RMS
OK	Cancel	

Image 10: Enable 'Show advanced sensor settings', click 'Save sensor' and define desired advanced write options

If the option "Show advanced sensor settings" is checked, the user can enter the Advanced write options after clicking on the Save sensor button.

How to use Dewesoft TEDS Editor?

TEDS editor is a *complete tool for the management of TEDS chips*. Even though we spent a lot of time developing it, it is completely free of charge. If you like it, we would be really happy if you make a donation to your local charity.

You don't even need a Dewesoft instrument to use DeweTEDSEditor, it works with low-cost OneWire Reader, so you can use it with your sensor calibration equipment to prepare sensors to work with Dewesoft or any other instrument supporting TEDS. The one we use as standard is a DS9490R USB based reader. It can be bough for around 20 USD.

Interface		TEDS Device			TEDS T	emplat	e Standard I	EEE P1451.4					
Device DE	WESoft USB V	none	Read & write all pages	>>		-	Not defined		✓ ID none	Add new template	Load TEDS defin	nition from file	
ChNr. 1			Read CTRL pages		Model N				0	Add user data	Save TEDS def	finition to file	
	-							@	U	Remove this template	autocreate file	name Create DSI	
R	lead from device				Serial N	umber	0			Remove all templates			
	Erase TEDS				Template	e empty							
	Write to device				· ·								
		Tode data			Descript	tion			VALUE		Unit	Access	
Name: SIRIU SerialNr: D01			Template data										
Revision: 1.1	.1.0	Page	Data										
Firmware: 1.3 CalDate: 05.0	3.2020												
Measurement Range: 1600													
LP filter: Off	•												
<	>												
30/04/2020 1	0:54:45: Startup init [[0:54:45: TEDS read Ch	EWESoft USB]	done.	\sim									
	0:54:54: TEDS read fo				BitPos	Dial	DataType	Definition					

You can find DeweTEDSEditor on our web page in the download section.

Image 11: Dewesoft TEDS Editor interface

After we **Read from device**, the screen gets filled with information from the sensor. Before reading from the device, select the right channel number on which you have connected TEDS.

Interface	2 2 . TEDS Device	TEDS Template Standard IEEE P1451.4	3.	
Device DEWESoft USB V	DS24B33 V Read & write all pages >>	Manufacturer Dewesoft	V ID 106 Add new template	Load TEDS definition from file
	Read CTRL pages		Add upon data	Save TEDS definition to file
ChNr. 8	Alternative Name(s): DS2433 Descr: 4-kBit EEPROM		0 Remove this template	✓ autocreate filename Create DSI
Read from device	SN: 1B0000025A391E23	Serial Number 112255	Remove all templates	
Erase TEDS		[#33] Bridge [#6] DS Ampl [#7] DS Sensor		
Write to device		(IEEE 1451.4 V1.0) (TID#33) (Bridge Sensors)	(BitSize:211 [Min:209 Max:265])	
	Teds data Template data	Description	VALUE	Unit Access
ame: SIRIUS-HS-LV erialNr: D012914BC1		Transducer Electrical Signal	Bridge Sensor	Asig
evision: 1.5.0.0	Page Data ^	Physical Measurand	Temperature (kelvin)	Cal
rmware: 2.4 alDate: 05.03.2020	0 D723 3CA0 4F 7E AA07 00 C4F8 FF 7F D003 00	Minimum Temperature	0	K Cal
easurement: Voltage	1 68 A0 2D 00 C8 40 00 00 00 30 86 7A 00 98 12 7A		0,01	K Cal
ange: 100 V 9 filter: Off	00 3A 20 80 20 00 00 00 00 20 88 A8E5 39 9D 5A		mV/V	Cal
filter: DC put type: Single ended	2 19 26 CF 07 48 03 0F 86 21 73 77 00 00 00 00 00 00 00 00 00 00 00 00 00		0	V/V Cal
nort active: no	3 00 00 00 00 00 00 00 00 00 00 00 00 00		0,01	V/V Cal
citation: 5 V citation type: Bipolar	- 00 00 00 00 00 00 00 00 00 00 00 00 00		Bridge Full	Asig
	4 00 00 00 00 00 00 00 00 00 00 00 00 00	2 11	50	Ohm ID
	5 00 00 00 00 00 00 00 00 00 00 00 00 00		1E-6	sec ID
			5	V ID
	6 00 00 00 00 00 00 00 00 00 00 00 00 00	· · ·	NAN	V ID
	7 00 00 00 00 00 00 00 00 00 00 00 00 00	Excitation Level (Maximal)	NAN	V ID
	- 00 00 00 00 00 00 00 00 00 00 00 00 00	Calibration Date	22.05.2019	Cal
	8 00 00 00 00 00 00 00 00 00 00 00 00 00	Calibration Initials		Cal
	9 00 00 00 00 00 00 00 00 00 00 00 00 00		730	days Cal
		Measurement location ID	0	Usr
	10 00 00 00 00 00 00 00 00 00 00 00 00 0			
>	$ 11 \begin{smallmatrix} 00 & 00 & 00 & 00 & 00 & 00 & 00 & $			
	Memory failed. Please check settings.	TotalSize: 575 bits; Teds device pages nee	eded: 3	Inf
/04/2020 11:01:05: TEDS read	[1765 ms] for module [SIRIUS-HS-LV] successful.	BitPos BitLen DataType Definition		

Image 12: Reading the TEDS chip from a sensor

What we can see are three sections:

- 1. Interface,
- 2. TEDS device and
- 3. TEDS template.

1. Interface section

The left side is the Interface section and shows us the three Interfaces that Dewesoft allows to have - Dewesoft USB device, Amplifiers RS232, and OneWire reader.

Image 13: Interface section

If we choose for example Dewesoft device in the Interface section, we also need to choose the right Channel number (ChNr.). And then we press *Read from device*.

On the left side we receive all the information of the amplifier or the interface: its name, serial number, calibration date, excitation, and more.

amplifier

2. TEDS device section

TEDS device section shows us what device was found after we have pressed Read from device. In our case it found a DS24B33 chip. This is also the usual TEDS that we recommend among all the different TEDS device options.

Image 15: TEDS Device section

Selecting TEDS Device

What we can see below the found TEDS device is also it's first (Alternative) name, short description, that shows us how many memory the TEDS has, in our example 4-kbit EEPROM and what is really unique - TEDS serial number (SN). On this point it is really important to point out that every TEDS chip has its own serial number.

3. TEDS template section

TEDS template section shows us the Manufacturer and his ID number, Model number and Serial number of TEDS. In this section we can also find detailed information, for example Bridge type, Response time,...

[#33] Bridge [#6] DS Ampl [#7] DS Sensor]		
(IEEE 1451.4 V1.0) (TID#33) (Bridge Sensors)	(BitSize:211 [Min:209 Max:265])		
Description	VALUE	Unit	
Transducer Electrical Signal	Bridge Sensor		Asig
Physical Measurand	microstrain		Cal
Minimum Strain	0	microstrain	Cal
Maximum Strain	20000	microstrain	Cal
Full Scale Electrical Value Precision	mV/V		Cal
Minimum Electrical Value	0	v/v	Cal
Maximum Electrical Value	0,01	V/V	Cal
Mapping Method	Bridge		Asig
Bridge type	Quarter		ID
Bridge element impendace	350	Ohm	ID
Response Time	1E-6	sec	ID
Excitation Level (Nominal)	10	V	ID
Excitation Level (Minimal)	10	V	ID
Excitation Level (Maximal)	10	V	ID
Calibration Date	21.01.2013		Cal
Calibration Initials	KS		Cal
Calibration Period (Days)	730	days	Cal
Measurement location ID	0		Usr

Image 17: TEDS template section includes a lot of information

All this information is decoded from TEDS Data on the left. After every change, Template data changes, and TEDS data stays the same as it was.

Image 18: Decoded information from TEDS

Down at the bottom we can find all the actions that were made since we have opened the TEDS editor. All the errors will also appear in this screen.

30/04/2020 11:08:35: Device type changed to [DEWESoft USB] by user.	\wedge
30/04/2020 11:09:21: TEDS read ChNr.8 started	_
30/04/2020 11:09:32: TEDS decode found unknown template. Please check settings.	
	U

Image19: Actions made in TEDS editor

NOTE: Calibration date and other information of TEDS can be only changed if it was created by Dewesoft or if somebody else made it with the Dewesoft tool (TEDS editor).

IMPORTANT: While using the TEDS editor, you really need to know what you are doing!

Creating new TEDS sensors

Creating a TEDS sensor from scratch is very easy. First of all, we need to write in the Manufacturer, Model number and serial number. These fields are quite limited in what we can write in, but there is a better way of doing that, so if these fields don't make you happy, read further.

When you have an empty sensor, we can add a new template by pressing the Add new template button. All standard IEEE sensors are supported. We can enter any field in the template in the user editor.

TEDS Templa	te Standard IEEE P1451.4			
Manufacturer	Not defined	~ ID 0	Add new template	Load TEDS definition from file
Model Number	0 @	0	Add user data	Save TEDS definition to file
Serial Number	0		Remove this template	autocreate filename Create DSI
			Remove all templates	

Image 20: Add a new template for an empty TEDS sensor

Now we can add additional templates. We can add a standard Calibration table, Calibration curve, or Frequency Response Curve or we can add the Dewesoft amplifier template to define all amplifier properties (Input type, Range, LP, and HP filter, ...).

Dewesoft TedsEd	litor	= U	×
emplate selection			
(IEEE 1451.4 V1.0)	ID(#25)	Accelerometer/Force transducer w. const. curr. ampl.	~
(IEEE 1451.4 V1.0)	ID(#25)	Accelerometer/Force transducer w. const. curr. ampl.	1
(IEEE 1451.4 V1.0)	ID(#26)	Charge Amplifier (incl. attached accelerometer)	
(IEEE 1451.4 V1.0)	ID(#27)	Microphones w. built-in preamp.	
(IEEE 1451.4 V1.0)	ID(#28)	Microphone Preamps, w. attached micr. or system	
(IEEE 1451.4 V1.0)	ID(#29)	Microphones (capacitive)	
(IEEE 1451.4 V1.0)	ID(#30)	High-Level Voltage Output Sensors	
(IEEE 1451.4 V1.0)	ID(#31)	Current Loop Output Sensors	
(IEEE 1451.4 V1.0)	ID(#32)	Resistance Sensors	
(IEEE 1451.4 V1.0)	ID(#33)	Bridge Sensors	
(IEEE 1451.4 V1.0)	ID(#34)	AC Linear/Rotary Variable Differential Transformer (LVDT/RVDT) Sensors	
(IEEE 1451.4 V1.0)	ID(#35)	Strain Gage	
(IEEE 1451.4 V1.0)			
(IEEE 1451.4 V1.0)	ID(#37)	Resistance Temperature Detectors (RTDs)	
(IEEE 1451.4 V1.0)			
		Potentiometric Voltage Divider	
(IEEE 1451.4 V1.0)	ID(#43)	Charge Amplifier (incl. attached force transducer)	~

Image 21: Adding standard templates

LP filter - defines which low pass filter will be chosen for the amplifier (advanced option has also type and filter order) User coupling - defines which high pass filter will be used (either sensor is AC or DC coupled) Measurement - defines which measurement type amplifier is set to (voltage, bridge, potentiometer, ...) User excitation - defines the nominal excitation voltage the amplifier is set to by default Input type - defines either amplifier is set to a differential or single-ended mode User range - defines the range that the amplifier must be set to Range dual-core - defines if high-dynamic dual-core ADC technology is used (related only to Dewesoft amplifiers)

We can also add Dewesoft sensor properties by adding the option to have a longer sensor description, serial number, limits, polarity, and so on.

www.Dewesoft TedsEditor V2.2.12	2			– 🗆 X
Interface	TEDS Device	TEDS Template Standard IEEE P1451.4		
Device DEWESoft USB ~ ChNr. 1	none Read & write all pages >>	Manufacturer Dewesoft VID 105 Model Number 1 A 1	Add new template Load TEDS definition from file Add user data Save TEDS definition to file	
Read from device		Serial Number 1	Remove this template autocreate filename Create DSI Remove all templates	
Erase TEDS		[#30] High-Level Voltage [#7] DS Sensor		
Write to device		(Dewesoft V1.0) (MID#106) (TID#7) (Dewesoft Sensor Properties) (BitSize:167 [Min:39 Max:2774])	
Name: SIRIUS-HS-HV	Teds data Template data	Description	VALUE	Unit Access
SerialNr: D010C7807C		User Manufacturer	No	Usr
Revision: 1.1.1.0	Page Data	User Modelname	Yes (7Bit per character)	Usr
Firmware: 1.3 CalDate: 05.03.2020		Model number	TuningFork	Usr
Measurement: Voltage		User SerialNumber	Yes (7Bit per character)	Usr
Range: 1600 V LP filter: Off		Serial number	123456a	Usr
		User physical measurand	No	Usr
		User scale	No	Usr
		User Sensor Limits	No	Usr
		Additional Bridge props	No	Usr
		Sensor Polarity	No	Usr
		User Sensor Offset changeable	No	Usr
		User Sensor Scale changeable	No	Usr
		User Calibration Info	No	Usr
		Default properties locked	No	Usr
		User Data	No	Usr
		Dewesoft future data		Cal
< >>				
30/04/2020 11:19:16: Templates c	leared by Liser.	TotalSize: 390 bits; Teds device pages needed: 2	Info	
30/04/2020 11:19:23: Base templa	ate [#30] High-Level Voltage created.	BitPos BitLen DataType Definition	11011	
30/04/2020 11:19:31: Addon temp	olate [#7] DS Sensor created.	bieros billeri batarype Definition		
	~			

Image 22: Dewesoft sensor properties

User manufacturer - this field overrides the manufacturer ID set in standard template

User model name - this field overrides the default model name (user can use alphanumeric characters of any length) User serial number - this field overrides the default serial number (user can use alphanumeric characters of any length) Physical measurand - defines which physical quantity sensor is measuring (according to SI unit system) User scale - defines the sensor scale according to Dewesoft standard (so SI unit conversion can be used) - unit of measurement must comply to Dewesoft SI unit scheme

User Sensor Limits - defines the absolute minimum and maximum that sensor can measure (will be used for display purposes)

Additional bridge props - the properties for strain gage sensors not defined by the IEEE standard

Sensor polarity - defines standard sensor polarity

User Sensor offset changeable - if yes, user can change the offset at a later time (when setting up the initial load, for example)

User Sensor scale changeable - if yes, user can assign additional scale factor at a later time Calibration info - additional info from calibration

We can also define a **Dewesoft transfer curve template**. This curve is used in *frequency analysis* to correct sensor frequency response as well as in the power module for example for current clamps sensor. We define the amplitude attenuation in % and the phase angle for a set of typical frequencies.

Once we are done defining the sensor, we can write it to the chip using **Write to device** button or save sensor for future use by using Save TEDS definition to file.

Dewesoft TEDS Library (TDL)

In the Dewesoft TEDS library we can find the description of *how templates in TEDS editor work*. With the use of this file, people should learn how to read all the information written in Dewesoft's templates. You can read all the data till the last bit, but no more than that.

You can download this text file <u>DewesoftTEDSLibrary.zip</u> from the <u>download</u> section on our Web page.

TEDS security code

Not everyone should be allowed to change the settings stored in the sensors (e.g. only the calibration lab which creates sensors), so you can apply to be asked for a password when entering the settings.

Go to Settings and press Security on the left side of the screen. Enable the checkbox "User access password" and enter a password. If this option is not available to enable it, first set the Use admin password for entering settings, and then the User access password will become available.

🔺 Settings		— 🗆 X
Search Q	SECURITY	
Devices	⊗ Lock settings	
Extensions	Use admin password for entering settings This password is needed in order to enable user access locking	9
Global variables	⊙ Lock user access	
Data header	User access password	\bigotimes
(^{II}) Startup	Use for stopping measurement	 ♥ ○ ○ ○ ○ ○ ○ ○ ○
Performance	Use for changing the setup	0
	Use for changing the sequence	0
User interface	Use for leaving full screen Security ×	0
Files and folders	Use for editing sensors Password	0
Storing	Allow user to select differe Retype password	0
Reports	⊗ File locking	
Security	Automatically lock data files a OK Cancel	~
(Update	Prevent modifiying of data files in analyse moue	
X Advanced		
Licensing		
		OK Cancel

Image 23: Check the User access password and enter the password

After that you need to define also what for would you like to use this access password. In our example, we would like to use it for *editing sensors*.

Connecting TEDS to another Amplifier

Now just connect the sensor with TEDS to another STG channel - in our case on image 24 from channel 7 to channel 8. You will see that **all settings are overtaken** correctly. It will also work on similar amplifiers, like STG-M, if the same settings are supported there. In our case settings on amplifiers are a bit different in range and values, however, all the TEDS sensor data were overtaken as it is shown on the image 24.

Device	preview			Dynamic acquisiti	on rate	Chann	el actions									
	00	0	0	100000 (Hz)	Bandwidth: 39062 Hz		Balance sensors	sors Reset sensors balance		lance Balance amplifiers		Short on	Zero all	Reset zer	o all	
Search Q																
ID	Used	C.	Name	Ampl. name 🔳	Range		Measurement	Min	Value	es	Max	Physic	al quantity	Units	Zero 🔳	Setup
1	Unused		AI 1	SIRIUS-HS-HV	20 V		Voltage	-20,00	0,01	7	20,00			V	Zero	Setup
2	Unused		AI 2	SIRIUS-HS-HV	20 V		Voltage	-20,00	-0,00)9	20,00			V	Zero	Setup
3	Unused		AI 3	SIRIUS-HS-HV	20 V		Voltage	-20,00	0,00	8	20,00			V	Zero	Setup
4	Unused		AI 4	SIRIUS-HS-CHG+	10 V		Voltage	-10,00	0,00	0	10,00			V	Zero	Setup
5	Unused		AI 5	SIRIUS-HS-ACC+	10 V		Voltage	-10,00	0,00	0	10,00			V	Zero	Setup
6	Unused		AI 6		0,1 V		Voltage	-0,10	0,000	00	0,10			v	Zero	Setup
7	Unused		TestTeds	SIRIUS-HS-STG	2 mV/V		Bridge	0,00	-0,0042		0,00	Tem	perature	К	Zero	Setup
8	Used		TestTeds	SIRIUS-HS-LV	10 mV/V		Bridge	-0,01	-0,000	005	0,01	Tem	perature	к		Setup

Image 24: Channel setup after connecting a TEDS sensor to another amplifier

When you write a TEDS chip or when a TEDS chip is detected in Dewesoft for the first time, it will also be written into the Sensor database. The TEDS has always the highest priority, if you plug it in, the Sensor database will be automatically updated with the settings from the chip.

Advanced TEDS settings

General Edit sensor	TEDS			
Serial number	112255			
Model				
Manufacturer	Dewesoft \checkmark			
Calibration date	22/05/2019			
Calibration period	730 Cal initials			
Show advanced sensor settings				
Save sensor	Write to TEDS			
	Not standard TEDS			

Image 25: Enable Advanced sensor settings

When you press Write to TEDS and "Show advanced sensor settings" checkbox is enabled, the following screen appears:

Advanced write options			x
✓ Lock all channel settings			
Unchecked properties will be locked to t	their default values		
Allow user to define offset			
Actual amplifier range		🗹 Lock	
✓ Actual amplifier LP-filter		✓ Lock	
Sensor max. limit		🗹 Lock	
Sensor min. limit		🗹 Lock	
Sensor excitation max		🗹 Lock	
Sensor excitation min		🗹 Lock	
Actual channel name		🗹 Lock	
Actual channel description		🗹 Lock	
Sample rate		🗹 Lock	
✓ Channel used		Lock	
Channel stored		Lock	
Channel group	Group4 🗸	Lock	
Channel decimal places		Lock	
Actual channel color		Lock	
Channel warning low		Lock	
Channel warning high		Lock	
Channel critical low		Lock	
Channel critical high		Lock	
Channel hysteresis		Lock	
	ОК	Cancel	

Image 26: Advanced sensor settings window

On the top of the Advanced write options window is the Lock all channel settings option, which you can disable in order to change desired locked settings. There are several options you can choose from, and few are described below:

- Allow user to define offset normally TEDS sensor defines the fixed scale and offset, but if this checkbox is checked, the user can additionally set sensor offset (like for zeroing)
- Write channel name to sensor will write the channel name to sensor stored in SensorDataBase and retrieve it when connected to the different physical channel (this is not written to TEDS)
- Sensor max./min. limit defines the absolute maximum and minimum (physical) value that the sensor can output. If it is set to INF, it will calculate it automatically from range and scaling. This will set Min and Max value of the channel.
- Sensor excitation min/max defines the limit of excitation that sensor can work from
- Password for TEDS Sensor can be also password protected.

When the TEDS sensor with password protection is connected to other channels, it will be read automatically, but when *unlocking the sensor* the user will need to *enter the password*.